Suppr超能文献

利用电子健康记录中的非结构化数据检测儿科用药不良事件——一项范围综述

LEVERAGING UNSTRUCTURED DATA IN ELECTRONIC HEALTH RECORDS TO DETECT ADVERSE EVENTS FROM PEDIATRIC DRUG USE - A SCOPING REVIEW.

作者信息

Golder Su, O'Connor Karen, Lopez-Garcia Guillermo, Tatonetti Nicholas, Gonzalez-Hernandez Graciela

机构信息

Department of Health Sciences, University of York, York, United Kingdom.

Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

medRxiv. 2025 Mar 20:2025.03.20.25324320. doi: 10.1101/2025.03.20.25324320.

Abstract

Adverse drug events (ADEs) in pediatric populations pose significant public health challenges, yet research on their detection and monitoring remains limited. This scoping review evaluates the use of unstructured data from electronic health records (EHRs) to identify ADEs in children. We searched six databases, including MEDLINE, Embase and IEEE Xplore, in September 2024. From 984 records, only nine studies met our inclusion criteria, indicating a significant gap in research towards identify ADEs in children. We found that unstructured data in EHRs can indeed be of value and enhance pediatric pharmacovigilance, although its use has been so far very limited. Traditional Natural Language Processing (NLP) methods have been employed to extract ADEs, but the approaches utilized face challenges in generalizability and context interpretation. These challenges could be addressed with recent advances in transformer-based models and large language models (LLMs), unlocking the use of EHR data at scale for pediatric pharmacovigilance.

摘要

儿科人群中的药物不良事件(ADEs)给公共卫生带来了重大挑战,但对其检测和监测的研究仍然有限。本综述评估了利用电子健康记录(EHRs)中的非结构化数据来识别儿童ADEs的情况。我们于2024年9月检索了六个数据库,包括MEDLINE、Embase和IEEE Xplore。在984条记录中,只有九项研究符合我们的纳入标准,这表明在识别儿童ADEs的研究方面存在显著差距。我们发现,EHRs中的非结构化数据确实具有价值,并能加强儿科药物警戒,尽管目前其应用非常有限。传统的自然语言处理(NLP)方法已被用于提取ADEs,但所采用的方法在通用性和上下文解释方面面临挑战。基于Transformer的模型和大语言模型(LLMs)的最新进展可以解决这些挑战,从而大规模解锁EHR数据在儿科药物警戒中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验