Suppr超能文献

通过基于强化学习的肌肉控制器对人体平衡进行表征

Characterization of Human Balance through a Reinforcement Learning-based Muscle Controller.

作者信息

Akbaş Kübra, Mummolo Carlotta, Zhou Xianlian

机构信息

Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America.

Department of Mechanics, Mathematics, and Management at Politecnico di Bari, Bari, Italy.

出版信息

PLoS One. 2025 Apr 1;20(4):e0320211. doi: 10.1371/journal.pone.0320211. eCollection 2025.

Abstract

Objective characterization of human balance remains a challenge and clinical observation-based balance tests during physical rehabilitation are often affected by subjectivity. On the other hand, computational approaches mostly rely on center of pressure (COP) tracking and inverted pendulum models, which do not capture the multi-joint and muscle contributions to whole-body balance. This study proposes a novel musculoskeletal modeling and control methodology to investigate human balancing capabilities in the center of mass (COM) state space. A musculoskeletal model is integrated with a balance controller trained through reinforcement learning (RL) to explore the limits of dynamic balance during postural sway. The RL framework consists of two interlinked neural networks (balance recovery and muscle coordination) and is trained using Proximal Policy Optimization (PPO) under multiple training strategies. By exploring recovery from random initial COM states with a trained controller, a balance region (BR) is obtained that encloses successful state-space trajectories. Comparing BRs obtained from different trained controllers with the analytical postural stability limits of a linear inverted pendulum model, we observe a similar trend in COM balanced states, but reduced recoverable areas. Furthermore, the effects of muscle weakness and neural excitation delay on the BRs are investigated, revealing reduced balancing capability in the COM state space. The novel approach of determining regions of stability through learning muscular balance controllers provides a promising avenue for personalized balance assessments and objective quantification of balance capability in humans with different health conditions.

摘要

对人体平衡进行客观表征仍然是一项挑战,并且在物理康复过程中基于临床观察的平衡测试常常受到主观性的影响。另一方面,计算方法大多依赖于压力中心(COP)跟踪和倒立摆模型,这些方法无法捕捉多关节和肌肉对全身平衡的贡献。本研究提出了一种新颖的肌肉骨骼建模与控制方法,以研究质心(COM)状态空间中的人体平衡能力。将一个肌肉骨骼模型与一个通过强化学习(RL)训练的平衡控制器相结合,以探索姿势摆动期间动态平衡的极限。RL框架由两个相互关联的神经网络(平衡恢复和肌肉协调)组成,并在多种训练策略下使用近端策略优化(PPO)进行训练。通过使用经过训练的控制器从随机初始COM状态探索恢复情况,获得了一个包含成功状态空间轨迹的平衡区域(BR)。将从不同训练控制器获得的BR与线性倒立摆模型的分析姿势稳定性极限进行比较,我们观察到COM平衡状态有类似趋势,但可恢复区域减小。此外,还研究了肌肉无力和神经兴奋延迟对BR的影响,揭示了COM状态空间中平衡能力的降低。通过学习肌肉平衡控制器来确定稳定区域的新方法为个性化平衡评估和对不同健康状况人群的平衡能力进行客观量化提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b9/11960994/9947088396f8/pone.0320211.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验