Suppr超能文献

多发性骨髓瘤的个体化动态风险评估与治疗选择

Individualized dynamic risk assessment and treatment selection for multiple myeloma.

作者信息

Murie Carl, Turkarslan Serdar, Patel Anoop P, Coffey David G, Becker Pamela S, Baliga Nitin S

机构信息

Institute for Systems Biology, Seattle, WA, USA.

Department of Neurosurgery, Duke University, Durham, NC, USA.

出版信息

Br J Cancer. 2025 Jun;132(10):922-936. doi: 10.1038/s41416-025-02987-6. Epub 2025 Apr 1.

Abstract

BACKGROUND

Individualized treatment decisions for multiple myeloma (MM) patients require accurate risk stratification that accounts for patient-specific consequences of cytogenetic abnormalities on disease progression.

METHODS

Previously, SYstems Genetic Network AnaLysis (SYGNAL) of multi-omics tumor profiles from 881 MM patients generated a mmSYGNAL network of transcriptional programs underlying disease progression across MM subtypes. Here, through machine learning on activity profiles of mmSYGNAL programs we have generated a unified framework of cytogenetic subtype-specific models for individualized risk classifications and prediction of treatment response.

RESULTS

Testing on 1,367 patients across five independent cohorts demonstrated that the framework of mmSYGNAL risk models significantly outperformed cytogenetics, International Staging System, and multi-gene biomarker panels in predicting PFS at primary diagnosis, pre- and post-transplant and even after multiple relapses, making it useful for individualized risk assessment throughout the disease trajectory. Further, treatment response predictions were significantly concordant with efficacy of 67 drugs in killing myeloma cells from eight relapsed refractory patients. The model also provided new insights into matching MM patients to drugs used in standard of care, at relapse, and in clinical trials.

CONCLUSION

Activities of transcriptional programs offer significantly better prognostic and predictive assessments of treatments across different stages of MM in an individual patient.

摘要

背景

多发性骨髓瘤(MM)患者的个体化治疗决策需要准确的风险分层,该分层应考虑细胞遗传学异常对疾病进展的患者特异性影响。

方法

此前,对881例MM患者的多组学肿瘤图谱进行系统遗传网络分析(SYGNAL),生成了一个mmSYGNAL网络,该网络包含MM各亚型疾病进展背后的转录程序。在此,通过对mmSYGNAL程序活性图谱进行机器学习,我们生成了一个统一框架,包含细胞遗传学亚型特异性模型,用于个体化风险分类和治疗反应预测。

结果

在五个独立队列的1367例患者中进行测试表明,mmSYGNAL风险模型框架在预测初诊、移植前后甚至多次复发后的无进展生存期(PFS)方面显著优于细胞遗传学、国际分期系统和多基因生物标志物面板,使其在整个疾病进程中对个体化风险评估有用。此外,治疗反应预测与来自8例复发难治性患者的67种药物杀伤骨髓瘤细胞的疗效显著一致。该模型还为MM患者与标准治疗、复发时及临床试验中使用的药物匹配提供了新见解。

结论

转录程序的活性为个体患者MM不同阶段的治疗提供了显著更好的预后和预测评估。

相似文献

6
Early versus deferred treatment for early stage multiple myeloma.早期多发性骨髓瘤的早期治疗与延迟治疗
Cochrane Database Syst Rev. 2003;2003(1):CD004023. doi: 10.1002/14651858.CD004023.
8
Bisphosphonates in multiple myeloma: a network meta-analysis.双膦酸盐类药物治疗多发性骨髓瘤:一项网状Meta分析
Cochrane Database Syst Rev. 2012 May 16(5):CD003188. doi: 10.1002/14651858.CD003188.pub3.
10
Individualized dynamic risk assessment for multiple myeloma.多发性骨髓瘤的个体化动态风险评估
medRxiv. 2024 Apr 3:2024.04.01.24305024. doi: 10.1101/2024.04.01.24305024.

本文引用的文献

4
Belantamab mafodotin in multiple myeloma.贝利司他单抗在多发性骨髓瘤中的应用
Expert Opin Biol Ther. 2023 Jul-Dec;23(11):1043-1047. doi: 10.1080/14712598.2023.2218543. Epub 2023 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验