Murie Carl, Turkarslan Serdar, Patel Anoop P, Coffey David G, Becker Pamela S, Baliga Nitin S
Institute for Systems Biology, Seattle, WA, USA.
Department of Neurosurgery, Duke University, Durham, NC, USA.
Br J Cancer. 2025 Jun;132(10):922-936. doi: 10.1038/s41416-025-02987-6. Epub 2025 Apr 1.
Individualized treatment decisions for multiple myeloma (MM) patients require accurate risk stratification that accounts for patient-specific consequences of cytogenetic abnormalities on disease progression.
Previously, SYstems Genetic Network AnaLysis (SYGNAL) of multi-omics tumor profiles from 881 MM patients generated a mmSYGNAL network of transcriptional programs underlying disease progression across MM subtypes. Here, through machine learning on activity profiles of mmSYGNAL programs we have generated a unified framework of cytogenetic subtype-specific models for individualized risk classifications and prediction of treatment response.
Testing on 1,367 patients across five independent cohorts demonstrated that the framework of mmSYGNAL risk models significantly outperformed cytogenetics, International Staging System, and multi-gene biomarker panels in predicting PFS at primary diagnosis, pre- and post-transplant and even after multiple relapses, making it useful for individualized risk assessment throughout the disease trajectory. Further, treatment response predictions were significantly concordant with efficacy of 67 drugs in killing myeloma cells from eight relapsed refractory patients. The model also provided new insights into matching MM patients to drugs used in standard of care, at relapse, and in clinical trials.
Activities of transcriptional programs offer significantly better prognostic and predictive assessments of treatments across different stages of MM in an individual patient.
多发性骨髓瘤(MM)患者的个体化治疗决策需要准确的风险分层,该分层应考虑细胞遗传学异常对疾病进展的患者特异性影响。
此前,对881例MM患者的多组学肿瘤图谱进行系统遗传网络分析(SYGNAL),生成了一个mmSYGNAL网络,该网络包含MM各亚型疾病进展背后的转录程序。在此,通过对mmSYGNAL程序活性图谱进行机器学习,我们生成了一个统一框架,包含细胞遗传学亚型特异性模型,用于个体化风险分类和治疗反应预测。
在五个独立队列的1367例患者中进行测试表明,mmSYGNAL风险模型框架在预测初诊、移植前后甚至多次复发后的无进展生存期(PFS)方面显著优于细胞遗传学、国际分期系统和多基因生物标志物面板,使其在整个疾病进程中对个体化风险评估有用。此外,治疗反应预测与来自8例复发难治性患者的67种药物杀伤骨髓瘤细胞的疗效显著一致。该模型还为MM患者与标准治疗、复发时及临床试验中使用的药物匹配提供了新见解。
转录程序的活性为个体患者MM不同阶段的治疗提供了显著更好的预后和预测评估。