Suppr超能文献

一种用于在线社交媒体文本摘要和分类模型的带有卷积学习网络的自适应搜索机制。

An adaptive search mechanism with convolutional learning networks for online social media text summarization and classification model.

作者信息

Al-Anazi Reema G, Alzaidi Muhammad Swaileh A, Eltahir Majdy M, Alkhiri Hassan, Alajmani Samah Hazzaa, Darem Abdulbasit A, Alshahrani Mohammed, Alhebaishi Nawaf

机构信息

Department of Arabic Language and Literature, College of Humanities and Social Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.

Department of English Language, College of Language Sciences, King Saud University, P. O. Box 145111, Riyadh, Saudi Arabia.

出版信息

Sci Rep. 2025 Apr 1;15(1):11058. doi: 10.1038/s41598-025-95381-4.

Abstract

The fast development of social media platforms has led to an unprecedented growth of daily short text content. Removing valued patterns and insights from this vast amount of textual data requires advanced methods to provide information while preserving its essential components successfully. A text summarization system takes more than one document as input and tries to give a fluent and concise summary of the most significant information in the input. Recent solutions for condensing and reading text are ineffective and time-consuming, provided plenty of information is available online. Concerning this challenge, automated text summarization methods have developed as a convincing choice, achieving important significance in their growth. It was separated into two kinds according to the abstraction methods utilized: abstractive summarization (AS) and extractive summarization (ES). Furthermore, automatic text summarization has many applications and spheres of impact. This manuscript proposes an Adaptive Search Mechanism Based Hierarchical Learning Networks for Social Media Data Summarization and Classification Model (ASMHLN-SMDSCM) technique. The ASMHLN-SMDSCM approach aims to present a novel approach for text summarization on social media using advanced deep learning models. To accomplish that, the proposed ASMHLN-SMDSCM model performs text pre-processing, which contains dissimilar levels employed to handle unprocessed data. The BERT model is used for the feature extraction process. Furthermore, the moth search algorithm (MSA)-based hyperparameter selection process is performed to optimize the feature extraction results of the BERT model. Finally, the classification uses the TabNet and convolutional neural network (TabNet + CNN) model. The efficiency of the ASMHLN-SMDSCM method is validated by comprehensive studies using the FIFA and FARMER datasets. The experimental validation of the ASMHLN-SMDSCM method illustrated a superior accuracy value of 98.87% and 98.55% over recent techniques.

摘要

社交媒体平台的快速发展导致每日短文本内容出现了前所未有的增长。从海量文本数据中提取有价值的模式和见解需要先进的方法,以便在成功保留其关键要素的同时提供信息。文本摘要系统以多个文档为输入,并试图对输入中最重要的信息给出流畅且简洁的摘要。鉴于网上有大量信息可用,最近用于压缩和阅读文本的解决方案效率低下且耗时。针对这一挑战,自动文本摘要方法已发展成为一种令人信服的选择,在其发展过程中具有重要意义。根据所采用的抽象方法,它可分为两类:抽象摘要(AS)和提取摘要(ES)。此外,自动文本摘要有许多应用和影响领域。本文提出了一种基于自适应搜索机制的分层学习网络,用于社交媒体数据摘要和分类模型(ASMHLN - SMDSCM)技术。ASMHLN - SMDSCM方法旨在使用先进的深度学习模型,为社交媒体上的文本摘要提供一种新颖的方法。为实现这一目标,所提出的ASMHLN - SMDSCM模型执行文本预处理,其中包含用于处理未处理数据的不同级别。BERT模型用于特征提取过程。此外,执行基于蛾类搜索算法(MSA)的超参数选择过程,以优化BERT模型的特征提取结果。最后,分类使用TabNet和卷积神经网络(TabNet + CNN)模型。通过使用FIFA和FARMER数据集进行的综合研究,验证了ASMHLN - SMDSCM方法的效率。ASMHLN - SMDSCM方法的实验验证表明,与最近的技术相比,其准确率分别高达98.87%和98.55%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301d/11961708/08e5c786e4f2/41598_2025_95381_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验