Suppr超能文献

将粒子群优化与回溯搜索优化相结合,用于二维卷积神经网络的特征提取,并采用基于注意力的堆叠双向长短期记忆分类器进行有效的单文档和多文档摘要。

Integrating particle swarm optimization with backtracking search optimization feature extraction with two-dimensional convolutional neural network and attention-based stacked bidirectional long short-term memory classifier for effective single and multi-document summarization.

作者信息

Rautaray Jyotirmayee, Panigrahi Sangram, Nayak Ajit Kumar

机构信息

Department of Computer Science and Engineering, Siksha O Anusandhan University Institute of Technical Education and Research, Bhubaneswar, Odisha, India.

Department of Computer Science and Information Technology, Siksha O Anusandhan University Institute of Technical Education and Research, Bhubaneswar, Odisha, India.

出版信息

PeerJ Comput Sci. 2024 Dec 12;10:e2435. doi: 10.7717/peerj-cs.2435. eCollection 2024.

Abstract

The internet now offers a vast amount of information, which makes finding relevant data quite challenging. Text summarization has become a prominent and effective method towards glean important information from numerous documents. Summarization techniques are categorized into single-document and multi-document. Single-document summarization (SDS) targets on single document, whereas multi-document summarization (MDS) combines information from several sources, posing a greater challenge for researchers to create precise summaries. In the realm of automatic text summarization, advanced methods such as evolutionary algorithms, deep learning, and clustering have demonstrated promising outcomes. This study introduces an improvised Particle Swarm Optimization with Backtracking Search Optimization (PSOBSA) designed for feature extraction. For classification purpose, it recommends two-dimensional convolutional neural network (2D CNN) along with an attention-based stacked bidirectional long short-term memory (ABS-BiLSTM) model to generate new summarized sentences by analyzing entire sentences. The model's performance is assessed using datasets from DUC 2002, 2003, and 2005 for single-document summarization, and from DUC 2002, 2003, and 2005, Multi-News, and CNN/Daily Mail for multi-document summarization. It is compared against five advanced techniques: particle swarm optimization (PSO), Cat Swarm Optimization (CSO), long short-term memory (LSTM) with convolutional neural networks (LSTM-CNN), support vector regression (SVR), bee swarm algorithm (BSA), ant colony optimization (ACO) and the firefly algorithm (FFA). The evaluation metrics include ROUGE score, BLEU score, cohesion, sensitivity, positive predictive value, readability, and scenarios of best, worst, and average case performance to ensure coherence, non-redundancy, and grammatical correctness. The experimental findings demonstrate that the suggested model works better than the other summarizing techniques examined in this research.

摘要

互联网如今提供了海量信息,这使得查找相关数据颇具挑战性。文本摘要已成为从众多文档中搜集重要信息的一种突出且有效的方法。摘要技术可分为单文档和多文档两类。单文档摘要(SDS)针对单个文档,而多文档摘要(MDS)则整合来自多个来源的信息,这给研究人员创建精确摘要带来了更大挑战。在自动文本摘要领域,进化算法、深度学习和聚类等先进方法已展现出可观的成果。本研究引入了一种为特征提取而设计的改进型带有回溯搜索优化的粒子群优化算法(PSOBSA)。出于分类目的,它推荐使用二维卷积神经网络(2D CNN)以及基于注意力的堆叠双向长短期记忆(ABS - BiLSTM)模型,通过分析整个句子来生成新的摘要句子。使用来自2002年、2003年和2005年文档理解会议(DUC)的数据集进行单文档摘要评估,以及使用来自2002年、2003年和2005年文档理解会议、多新闻(Multi - News)以及美国有线电视新闻网/每日邮报(CNN/Daily Mail)的数据集进行多文档摘要评估,来评估该模型的性能。将其与五种先进技术进行比较:粒子群优化算法(PSO)、猫群优化算法(CSO)、结合卷积神经网络的长短期记忆(LSTM - CNN)、支持向量回归(SVR)、蜂群算法(BSA)、蚁群优化算法(ACO)和萤火虫算法(FFA)。评估指标包括ROUGE分数、BLEU分数、连贯性、敏感度、阳性预测值、可读性以及最佳、最差和平均情况性能的场景,以确保连贯性、无冗余性和语法正确性。实验结果表明,所提出的模型比本研究中考察的其他摘要技术表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d53f/11784770/e1440eb2f054/peerj-cs-10-2435-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验