Suppr超能文献

基于蛋白质语言模型的突变效应预测研究进展

[Research progress in mutation effect prediction based on protein language models].

作者信息

Zhang Liang, Tan Pan, Hong Liang

机构信息

School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.

Shanghai National Center for Applied Mathematics (SJTU Center) & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Sheng Wu Gong Cheng Xue Bao. 2025 Mar 25;41(3):934-948. doi: 10.13345/j.cjb.240683.

Abstract

Predicting protein mutation effects is a key challenge in bioinformatics and protein engineering. Recent advancements in deep learning, particularly the development of protein language models (PLMs), have brought new opportunities to this field. This review summarizes the application of PLMs in predicting protein mutation effects, focusing on three main types of models: sequence-based models, structure-based models, and models that combine sequence and structural information. We analyze in detail the principles, advantages, and limitations of these models and discuss the application of unsupervised and supervised learning in model training. Furthermore, this paper discusses the main challenges currently faced, including the acquisition of high-quality datasets and the handling of data noise. Finally, we look ahead to future research directions, including the application prospects of emerging technologies such as multimodal fusion and few-shot learning. This review aims to provide researchers with a comprehensive perspective to further advance the prediction of protein mutation effects.

摘要

预测蛋白质突变效应是生物信息学和蛋白质工程中的一项关键挑战。深度学习的最新进展,特别是蛋白质语言模型(PLM)的发展,为该领域带来了新的机遇。本综述总结了PLM在预测蛋白质突变效应中的应用,重点关注三种主要类型的模型:基于序列的模型、基于结构的模型以及结合序列和结构信息的模型。我们详细分析了这些模型的原理、优点和局限性,并讨论了无监督学习和监督学习在模型训练中的应用。此外,本文还讨论了当前面临的主要挑战,包括高质量数据集的获取和数据噪声的处理。最后,我们展望了未来的研究方向,包括多模态融合和少样本学习等新兴技术的应用前景。本综述旨在为研究人员提供一个全面的视角,以进一步推进蛋白质突变效应的预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验