Manzotti Alessandro, Monteil Raphaël, Cheminant Navarro Soizic, Croteau Dany, Charreton Lucie, Hoguin Antoine, Strumpen Nils Fabian, Jallet Denis, Daboussi Fayza, Kroth Peter G, Bouget François-Yves, Jaubert Marianne, Bailleul Benjamin, Bouly Jean-Pierre, Falciatore Angela
Laboratoire de Photobiologie et Physiologie des Plastes et des Microalgue, UMR7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, 75005, Paris, France.
Fachbereich Biologie, Universität Konstanz, Konstanz, 78457, Germany.
New Phytol. 2025 May;246(4):1724-1739. doi: 10.1111/nph.70099. Epub 2025 Apr 2.
Phasing biological and physiological processes to periodic light-dark cycles is crucial for the life of most organisms. Marine diatoms, as many phytoplanktonic species, exhibit biological rhythms, yet their molecular timekeepers remain largely uncharacterized. Recently, the bHLH-PAS protein RITMO1 has been proposed to act as a regulator of diatom circadian rhythms. In this study, we first determined the physiological conditions to monitor circadian clock activity and its perturbation in the diatom model species Phaeodactylum tricornutum by using cell fluorescence as a circadian output. Employing ectopic overexpression, targeted gene mutagenesis, and functional complementation, we then investigated the role of RITMO1 in various circadian processes. Our data reveal that RITMO1 significantly influences the P. tricornutum circadian rhythms not only of cellular fluorescence, but also of photosynthesis and of the expression of clock-controlled genes, including transcription factors and putative clock input/output components. RITMO1 effects on rhythmicity are unambiguously detectable under free-running conditions. By uncovering the complex regulation of biological rhythms in P. tricornutum, these findings advance our understanding of the endogenous factors controlling diatom physiological responses to environmental changes. They also offer initial insights into the mechanistic principles of oscillator functions in a major group of phytoplankton, which remain largely unexplored in chronobiology.
使生物和生理过程与昼夜周期性的明暗循环同步,对大多数生物体的生命至关重要。与许多浮游植物物种一样,海洋硅藻表现出生物节律,但其分子生物钟在很大程度上仍未得到表征。最近,有人提出bHLH-PAS蛋白RITMO1作为硅藻昼夜节律的调节因子。在本研究中,我们首先确定了生理条件,通过使用细胞荧光作为昼夜节律输出,来监测硅藻模式物种三角褐指藻的生物钟活动及其扰动。然后,我们利用异位过表达、靶向基因诱变和功能互补,研究了RITMO1在各种昼夜节律过程中的作用。我们的数据表明,RITMO1不仅显著影响三角褐指藻细胞荧光的昼夜节律,还影响光合作用以及包括转录因子和假定的生物钟输入/输出组件在内的生物钟控制基因的表达。在自由运行条件下,可以明确检测到RITMO1对节律性的影响。通过揭示三角褐指藻生物节律的复杂调控,这些发现增进了我们对控制硅藻对环境变化生理反应的内源性因素的理解。它们还为一大类浮游植物中振荡器功能的机制原理提供了初步见解,而这些原理在时间生物学中很大程度上仍未被探索。