Sun Haohao, Liu Yaqing, Huang Yiping, Xiong Kangjun, Zhang Zhendong, Wang Weishan, Dai Yi, Li Jing, Li Qi, Wang Sibo, Shi Chenhui
The First Affiliated Hospital of Shihezi University, Shihezi, China.
The Medical College of Shihezi University, Shihezi, China.
Front Microbiol. 2025 Mar 19;16:1558603. doi: 10.3389/fmicb.2025.1558603. eCollection 2025.
Osseous echinococcosis, caused by infection, is characterized by progressive bone destruction driven by abnormal osteoclast activation. Dual-specificity phosphatase 4 (DUSP4), a key negative regulator of the MAPK pathway, inhibits osteoclast differentiation and bone resorption. This study aimed to elucidate the role of DUSP4 in -induced bone loss.
In vitro, a co-culture system of protoscoleces (PSCs) and bone marrow-derived macrophages (BMMs) was established. Osteoclast differentiation and bone resorption were assessed using TRAP staining and F-actin immunofluorescence. Transcriptome sequencing identified DUSP4 as a key regulator. DUSP4 overexpression was performed to evaluate its effects on osteoclast markers and MAPK signaling (ERK, JNK, p38). In vivo, a mouse model of osseous echinococcosis was developed, and DUSP4 overexpression was achieved via lentiviral transduction. Bone destruction was analyzed using X-ray, micro-CT, and histology.
PSCs significantly enhanced osteoclast differentiation and bone resorption, upregulated osteoclast markers (CTSK, NFATc1), and activated MAPK signaling. DUSP4 overexpression reversed these effects, reducing osteoclast activity and MAPK phosphorylation. In vivo, PSC infection caused severe bone destruction, which was mitigated by DUSP4 overexpression.
This study reveals the molecular mechanism by which drives abnormal osteoclast activation through the DUSP4-MAPK signaling axis. Parasitic infection suppresses DUSP4 expression, relieving its negative regulation of the MAPK pathway and leading to excessive osteoclast differentiation. Restoring DUSP4 expression effectively reverses abnormal MAPK pathway activation, reducing osteoclast bone resorption activity to physiological levels. These findings not only provide new insights into the pathological mechanisms of bone destruction in osseous echinococcosis but also establish DUSP4 as a critical therapeutic target for pathological bone resorption, laying the groundwork for host-directed treatment strategies for parasitic bone diseases.
骨包虫病由感染引起,其特征是破骨细胞异常激活导致进行性骨破坏。双特异性磷酸酶4(DUSP4)是丝裂原活化蛋白激酶(MAPK)途径的关键负调节因子,可抑制破骨细胞分化和骨吸收。本研究旨在阐明DUSP4在[感染名称未给出]诱导的骨质流失中的作用。
在体外,建立了原头节(PSCs)与骨髓来源巨噬细胞(BMMs)的共培养系统。使用抗酒石酸酸性磷酸酶(TRAP)染色和F-肌动蛋白免疫荧光评估破骨细胞分化和骨吸收情况。转录组测序确定DUSP4为关键调节因子。进行DUSP4过表达以评估其对破骨细胞标志物和MAPK信号通路(细胞外信号调节激酶(ERK)、c-Jun氨基末端激酶(JNK)、p38)的影响。在体内,建立了骨包虫病小鼠模型,并通过慢病毒转导实现DUSP4过表达。使用X射线、显微计算机断层扫描(micro-CT)和组织学分析骨破坏情况。
PSCs显著增强破骨细胞分化和骨吸收,上调破骨细胞标志物(组织蛋白酶K(CTSK)、活化T细胞核因子1(NFATc1)),并激活MAPK信号通路。DUSP4过表达逆转了这些作用,降低了破骨细胞活性和MAPK磷酸化水平。在体内,PSCs感染导致严重的骨破坏,而DUSP4过表达减轻了这种破坏。
本研究揭示了[感染名称未给出]通过DUSP4-MAPK信号轴驱动破骨细胞异常激活的分子机制。寄生虫感染抑制DUSP4表达,解除其对MAPK途径的负调节,导致破骨细胞过度分化。恢复DUSP4表达可有效逆转MAPK途径的异常激活,将破骨细胞骨吸收活性降低至生理水平。这些发现不仅为骨包虫病骨破坏的病理机制提供了新见解,还确立了DUSP4作为病理性骨吸收的关键治疗靶点,为寄生虫性骨病的宿主导向治疗策略奠定了基础。