Suppr超能文献

通过沥青衍生的多孔碳对碘物种进行双机制锚定以增强锌碘电池性能。

Dual-Mechanism Anchoring of Iodine Species by Pitch-Derived Porous Carbon for Enhanced Zinc-Iodine Battery Performance.

作者信息

Zeng Siqi, Chen Shuang, Ao Zhuoran, Lin Xiaolong, Yan Lijing, Liu Chenyu, Lin Zhan

机构信息

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.

College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, China.

出版信息

Small. 2025 May;21(19):e2501695. doi: 10.1002/smll.202501695. Epub 2025 Apr 3.

Abstract

Aqueous Zn-I battery is an overwhelming candidate for sustainable energy storage systems due to its high safety, low cost, and environmental friendliness. However, the serious self-discharge and the shuttle effect initiated by soluble polyiodides significantly hinder further development. Herein, a pitch-derived carbon (PPC) with a unique micro-/mesopores structure and abundant oxygen-containing functional groups is prepared, with dual-mechanism anchoring of iodine species to effectively confine the polyiodides for alleviating the above problems. The rich micropores of PPC (0.62 nm) function to inhibit the formation of I , and the large specific surface area enables a high I uptake of 64.51%. Moreover, oxygen-containing functional groups of PPC further enhance the interaction with I to strengthen the polyiodide confinement. Therefore, the Zn-I batteries exhibit a high specific capacity of 236.76 mAh g (4 mg cm) with an average Coulombic efficiency of 99.73% at 1 C, low self-discharge rate of 18.18% capacity loss after one-week resting, and superior durability of 20 000 cycles at 20 C with 95.08% retentive capacity. Especially, the pouch cell exhibits a superior area capacitance of 5.51 mAh cm at a high-loading (30 mg cm). This study provides an economically effective solution for the large-scale production of high-performance Zn-I batteries.

摘要

水系锌碘电池因其高安全性、低成本和环境友好性,是可持续储能系统的理想选择。然而,严重的自放电以及可溶性多碘化物引发的穿梭效应显著阻碍了其进一步发展。在此,制备了一种具有独特微孔/介孔结构和丰富含氧官能团的沥青基碳(PPC),通过双机制锚定碘物种来有效限制多碘化物,以缓解上述问题。PPC丰富的微孔(0.62纳米)可抑制I的形成,大比表面积使其碘吸附量高达64.51%。此外,PPC的含氧官能团进一步增强了与I的相互作用,强化了对多碘化物的限制。因此,锌碘电池在1C下表现出236.76 mAh g(4 mg cm)的高比容量,平均库仑效率为99.73%,自放电率低,静置一周后容量损失18.18%,在20C下具有20000次循环的优异耐久性,容量保持率为95.08%。特别是,软包电池在高负载(30 mg cm)下表现出5.51 mAh cm的优异面积电容。本研究为大规模生产高性能锌碘电池提供了一种经济有效的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验