Pei Li-Hua, Xu Dong-Ming, Luo Yan-Zhu, Guo Shao-Jie, Liu De-Rong, Jiang Si-Jie, Zhang Wen-Jun, Cao Fei-Fei
College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
Adv Mater. 2025 Mar;37(10):e2420005. doi: 10.1002/adma.202420005. Epub 2025 Jan 31.
Aqueous zinc iodine (Zn-I) batteries have attracted attention due to their low cost, environmental compatibility, and high specific capacity. However, their development is hindered by the severe shuttle effect of polyiodides and the slow redox conversion kinetics of the iodine (I) cathode. Herein, a long-life Zn-I battery is developed by anchoring iodine within an edible fungus slag-derived carbon matrix encapsulated with Zn single-atom catalysts (SAZn@C). The high N content and microporous structure of SAZn@C provide a strong iodine confinement, while the Zn-N-C sites chemical interact with polyiodides effectively mitigating the iodine dissolution and the polyiodide shuttle effect. Additionally, the uniformly distributed SAZn sites significantly enhance the redox conversion efficiency of I/I /I /I, leading to improved capacity. At a high current density of 10 A g, the designed Zn-I battery delivers an excellent capacity of 147.2 mAh g and a long lifespan of over 80 000 cycles with 93.6% capacity retention. Furthermore, the battery exhibits stable operation for 3500 times even at 50 °C, demonstrating significant advances in iodine reversible storage. This synergistic strategy optimizes composite structure, offering a practical approach to meet the requirements of high-performance Zn-I batteries.
水系锌碘(Zn-I)电池因其低成本、环境兼容性和高比容量而备受关注。然而,多碘化物严重的穿梭效应和碘(I)正极缓慢的氧化还原转换动力学阻碍了它们的发展。在此,通过将碘锚定在包裹有锌单原子催化剂(SAZn@C)的食用菌渣衍生碳基质中,开发了一种长寿命的Zn-I电池。SAZn@C的高氮含量和微孔结构提供了强大的碘限制作用,而Zn-N-C位点与多碘化物发生化学相互作用,有效减轻了碘的溶解和多碘化物的穿梭效应。此外,均匀分布的SAZn位点显著提高了I/I /I /I的氧化还原转换效率,从而提高了容量。在10 A g的高电流密度下,所设计的Zn-I电池具有147.2 mAh g的优异容量和超过80000次循环的长寿命,容量保持率为93.6%。此外,该电池即使在50°C下也能稳定运行3500次,在碘的可逆存储方面取得了显著进展。这种协同策略优化了复合结构,为满足高性能Zn-I电池的要求提供了一种实用方法。