Cheng Yu-Jia, Zhao Jian-Qiang, Ma Xiong-Feng, Zheng Hui-Li, He Liang, Zhang Jian, Lin Qipu
State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
Adv Mater. 2025 Jun;37(24):e2503756. doi: 10.1002/adma.202503756. Epub 2025 Apr 3.
The simultaneous enhancement of structural stability and photoelectroactivity in metal-organic frameworks (MOFs) remains a critical challenge for sustainable photocatalytic hydrogen (H) production. Herein, an atomically-precise heterocluster assembly approach is presented to construct two isostructural 3D MOFs, CuSL-CuX (X = Cl, Br), featuring a cds net. CuSL-CuXs integrate hexanuclear copper-sulfur {CuS} cluster and dinuclear copper-halogen {CuX} cluster, which not only impart exceptional stability across a broad pH range (1-14) but also enable wide visible-light absorption, tailored redox potentials, and efficient charge-carrier dynamics. Notably, halogen substitution markedly boosts photocatalytic activity: CuSL-CuBr achieves an efficient H evolution rate of 50.28 mmol g h without noble metals, doubling that of CuSL-CuCl (26.99 mmol g h) and surpassing most reported MOF-based photocatalysts. Both experimental and theoretical investigations indicate that bromine substitution optimizes electronic structure, refines orbital distribution, and accelerates charge separation, ultimately leading to promoted photocatalytic efficiency. This research provides insights into the structure-property interplay in heterocluster MOFs and establishes a paradigm for designing robust, high-performance photocatalysts through precise cluster engineering.
在金属有机框架材料(MOF)中同时提高结构稳定性和光电活性仍然是可持续光催化制氢面临的关键挑战。在此,我们提出了一种原子精确的异质簇组装方法来构建两种具有cds网络结构的同构三维MOF,即CuSL-CuX(X = Cl,Br)。CuSL-CuXs整合了六核铜硫{CuS}簇和双核铜卤{CuX}簇,这不仅赋予了其在广泛pH范围(1-14)内的卓越稳定性,还实现了宽可见光吸收、定制的氧化还原电位以及高效的电荷载流子动力学。值得注意的是,卤素取代显著提高了光催化活性:CuSL-CuBr在无贵金属的情况下实现了50.28 mmol g⁻¹ h⁻¹的高效析氢速率,是CuSL-CuCl(26.99 mmol g⁻¹ h⁻¹)的两倍,超过了大多数已报道的基于MOF的光催化剂。实验和理论研究均表明,溴取代优化了电子结构,细化了轨道分布,并加速了电荷分离,最终提高了光催化效率。这项研究为异质簇MOF中的结构-性能相互作用提供了见解,并通过精确的簇工程建立了设计坚固、高性能光催化剂的范例。