Oulmalme Chaimaa, Nakouri Haïfa, Jaafar Fehmi
University of Quebec at Chicoutimi, Quebec, Canada.
University of Quebec at Chicoutimi, Quebec, Canada; Université de Tunis, LARODEC, ISG Tunis, Tunisia.
Int J Med Inform. 2025 Jul;199:105903. doi: 10.1016/j.ijmedinf.2025.105903. Epub 2025 Apr 1.
Medical imaging is a vital diagnostic tool that provides detailed insights into human anatomy but faces challenges affecting its accuracy and efficiency. Advanced generative AI models offer promising solutions. Unlike previous reviews with a narrow focus, a comprehensive evaluation across techniques and modalities is necessary.
This systematic review integrates the three state-of-the-art leading approaches, GANs, Diffusion Models, and Transformers, examining their applicability, methodologies, and clinical implications in improving medical image quality.
Using the PRISMA framework, 63 studies from 989 were selected via Google Scholar and PubMed, focusing on GANs, Transformers, and Diffusion Models. Articles from ACM, IEEE Xplore, and Springer were analyzed.
Generative AI techniques show promise in improving image resolution, reducing noise, and enhancing fidelity. GANs generate high-quality images, Transformers utilize global context, and Diffusion Models are effective in denoising and reconstruction. Challenges include high computational costs, limited dataset diversity, and issues with generalizability, with a focus on quantitative metrics over clinical applicability.
This review highlights the transformative impact of GANs, Transformers, and Diffusion Models in advancing medical imaging. Future research must address computational and generalization challenges, emphasize open science, and validate these techniques in diverse clinical settings to unlock their full potential. These efforts could enhance diagnostic accuracy, lower costs, and improve patient outcome.
医学成像是一种重要的诊断工具,可提供有关人体解剖结构的详细见解,但面临着影响其准确性和效率的挑战。先进的生成式人工智能模型提供了有前景的解决方案。与以往聚焦狭窄的综述不同,有必要对各种技术和模态进行全面评估。
本系统综述整合了三种最先进的主要方法,即生成对抗网络(GANs)、扩散模型和变换器,研究它们在改善医学图像质量方面的适用性、方法和临床意义。
使用PRISMA框架,通过谷歌学术和PubMed从989项研究中筛选出63项研究,重点关注生成对抗网络、变换器和扩散模型。对来自美国计算机协会(ACM)、电气和电子工程师协会(IEEE)Xplore以及施普林格的文章进行了分析。
生成式人工智能技术在提高图像分辨率、降低噪声和增强逼真度方面显示出前景。生成对抗网络可生成高质量图像,变换器利用全局上下文,扩散模型在去噪和重建方面很有效。挑战包括高计算成本、数据集多样性有限以及泛化问题,且侧重于定量指标而非临床适用性。
本综述强调了生成对抗网络、变换器和扩散模型在推进医学成像方面的变革性影响。未来的研究必须应对计算和泛化挑战,强调开放科学,并在不同临床环境中验证这些技术,以释放其全部潜力。这些努力可以提高诊断准确性、降低成本并改善患者预后。