Suppr超能文献

具有界面选择性固定作用的仿生热电水泥用于自供电建筑。

Bio-inspired thermoelectric cement with interfacial selective immobilization towards self-powered buildings.

作者信息

Wang Yulin, Zheng Yangzezhi, Li Weihuan, Xiao Shuai, Chen Shengjun, Xing Jiarui, Xiong Chenchen, Zhou Yang, Zhang Wei, Hihara Takehiko, Moloto Nosipho, Miao Changwen

机构信息

State Key Laboratory of Engineering Materials for Major Infrastructure, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.

School of Transportation, Southeast University, Nanjing 211189, China.

出版信息

Sci Bull (Beijing). 2025 Jun 30;70(12):1994-2003. doi: 10.1016/j.scib.2025.03.032. Epub 2025 Mar 17.

Abstract

Buildings and infrastructure significantly contribute to global energy consumption and CO emissions. Transforming cement, the most widely used construction material, into a functional medium for heat harvesting presents a promising avenue to offset the energy demands of buildings. The disparity in diffusion rate between cations and anions within cement pore solution due to variations in interactions with pore walls, endows cement with inherent ionic thermoelectric properties. However, the isolation of pores by the dense cement matrix hinders the rapid transportation of ions with superior diffusion rates, impeding the enhancement of mobility difference between ions and limiting the enhancement of Seebeck coefficient. Inspired by the stem structure of plants, we present a cement-polyvinyl alcohol (PVA) composite (CPC) featuring aligned cement and PVA hydrogel layers. While PVA hydrogel layers provide ion diffusion highways for OH ions, cement-PVA interfaces establish strong coordination bonds with Ca ions and weaker interactions with OH ions, enabling selective immobilization, which amplifies the diffusion rate disparity between Ca and OH. The CPC's multilayer structure yields abundant interfaces, providing ample interaction sites that maximize the contribution of cement ions to thermoelectric performance. The as-prepared composite achieves an impressive Seebeck coefficient of -40.5 mV/K and a figure of merit (ZT) of 6.6 × 10. Due to the engineered multilayer structure, the CPC also demonstrates superior mechanical strength and intrinsic energy storage potential, which has been assembled into a self-powered architecture. The biomimetic structure and interfacial selective immobilization mechanism may pave the way for the design and fabrication of high-performance ionic thermoelectric materials.

摘要

建筑物和基础设施对全球能源消耗和碳排放有重大影响。将最广泛使用的建筑材料水泥转化为用于收集热量的功能介质,是抵消建筑物能源需求的一条有前景的途径。由于水泥孔隙溶液中阳离子和阴离子与孔壁相互作用的差异,导致其扩散速率不同,这赋予了水泥固有的离子热电性能。然而,致密的水泥基体对孔隙的隔离阻碍了具有较高扩散速率的离子的快速传输,从而阻碍了离子迁移率差异的提高,并限制了塞贝克系数的提高。受植物茎结构的启发,我们提出了一种具有对齐的水泥层和聚乙烯醇(PVA)水凝胶层的水泥-聚乙烯醇(PVA)复合材料(CPC)。虽然PVA水凝胶层为OH离子提供了离子扩散通道,但水泥-PVA界面与Ca离子建立了强配位键,与OH离子的相互作用较弱,实现了选择性固定,从而放大了Ca和OH之间的扩散速率差异。CPC的多层结构产生了丰富的界面,提供了充足的相互作用位点,使水泥离子对热电性能的贡献最大化。所制备的复合材料实现了令人印象深刻的-40.5 mV/K的塞贝克系数和6.6×10的优值(ZT)。由于设计的多层结构,CPC还表现出优异的机械强度和内在的储能潜力,并已被组装成自供电结构。这种仿生结构和界面选择性固定机制可能为高性能离子热电材料的设计和制造铺平道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验