Ko Kwangwook, Mejia Edgar B, Fowler Hayden E, Nguyen Suong T, AlFaraj Yasmeen, Wang Yuyan, Leguizamon Samuel C, Sottos Nancy R, Johnson Jeremiah A
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Beckman Institute for Advanced Science and Technology, Department of Material Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
J Am Chem Soc. 2025 Apr 16;147(15):12503-12510. doi: 10.1021/jacs.4c17395. Epub 2025 Apr 3.
Thermosets are used in numerous industrial applications due to their excellent stabilities and mechanical properties; however, their covalently cross-linked structures limit chemical circularity. Cleavable comonomers (CCs) offer a practical strategy to impart new end-of-life opportunities, such as deconstructability or remoldability, to thermosets without altering critical properties, cost, or manufacturing workflows. Nevertheless, CC-enabled recycling of thermosets has so far been limited to one cycle with a 25% recycled content. Here, we introduce a "fragment reactivation" strategy, wherein the oligomeric fragments obtained from CC-enabled thermoset deconstruction are activated with functional groups that improve fragment solubility and reactivity for subsequent rounds of recycling. Using polydicyclopentadiene (pDCPD), an industrial hydrocarbon thermoset material, containing low loadings of a siloxane-based CC, we first demonstrate two rounds of chemical recycling by incorporating 40 wt % norbornene silyl ether-reactivated fragments derived from the prior generation's deconstruction. Then, we show that the two-step sequence of deconstruction and reactivation can be unified into a single-step process, referred to as "deconstructive reactivation." Using this approach, we demonstrate three rounds of chemical recycling with 40-45 wt % fragments incorporated per cycle while maintaining key material properties and deconstructability. These three generations of recycling effectively extend the lifespan of deconstructable pDCPD thermosets by ∼2.6 times. Combined with CCs, fragment reactivation presents a promising and potentially generalizable strategy to improve the chemical recycling efficiency of thermosets.
热固性材料因其出色的稳定性和机械性能而被广泛应用于众多工业领域;然而,它们的共价交联结构限制了化学循环利用。可裂解共聚单体(CCs)提供了一种切实可行的策略,能够在不改变关键性能、成本或制造流程的前提下,赋予热固性材料新的生命周期末期机会,例如可解构性或可重塑性。尽管如此,到目前为止,基于CCs的热固性材料回收利用仅限于一个循环,且回收含量为25%。在此,我们引入了一种“片段再活化”策略,即通过功能基团激活从基于CCs的热固性材料解构中获得的低聚物片段,这些功能基团可提高片段的溶解性和反应活性,以便进行后续的循环利用。使用聚双环戊二烯(pDCPD),一种工业用烃类热固性材料,并含有低含量的硅氧烷基CCs,我们首先通过掺入40 wt%源自上一代解构的降冰片烯甲硅烷基醚再活化片段,展示了两轮化学回收利用。然后,我们表明解构和再活化的两步过程可以统一为一个单步过程,即“解构性再活化”。采用这种方法,我们展示了三轮化学回收利用,每个循环掺入40 - 45 wt%的片段,同时保持关键材料性能和可解构性。这三代回收利用有效地将可解构pDCPD热固性材料的使用寿命延长了约2.6倍。与CCs相结合,片段再活化提出了一种有前景且可能具有通用性的策略,以提高热固性材料的化学回收效率。