Zhang Shuyi, Xu Zhenchuang, Husted Keith E L, Lundberg David J, Brown Christopher M, Wang Yuyan, Shieh Peyton, Ko Kwangwook, Moore Jeffrey S, Johnson Jeremiah A
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
Angew Chem Int Ed Engl. 2025 May;64(19):e202500104. doi: 10.1002/anie.202500104. Epub 2025 Mar 27.
Permanently cross-linked polymer networks-thermosets-are often difficult to chemically deconstruct. The installation of cleavable bonds into the strands of thermosets using cleavable comonomers as additives can facilitate thermoset deconstruction without replacement of permanent cross-links, but such monomers can lead to reduced thermomechanical properties and require high loadings to function effectively, motivating the design of new and optimal cleavable additives. Here, we introduce "strand-fusing cross-linkers" (SFCs), which fuse two network strands via a four-way cleavable cross-link. SFCs enable deconstruction of model polydicyclopentadiene (pDCPD) thermosets with as little as one-fifth of the molar loading needed to achieve deconstruction using traditional cleavable comonomers. SFCs function under traditional oven curing as well as low-energy frontal ring-opening metathesis polymerization (FROMP) conditions and lead to improved thermomechanical properties, for example, glass transition temperatures, compared to prior cleavable comonomer designs. This work motivates the development of increasingly improved cleavable additives to enable thermoset deconstruction without compromising material performance.
永久交联的聚合物网络——热固性材料——通常难以进行化学解构。使用可裂解共聚单体作为添加剂,将可裂解键引入热固性材料的链中,可以促进热固性材料的解构,而无需替换永久性交联,但此类单体可能会导致热机械性能下降,并且需要高负载量才能有效发挥作用,这促使人们设计新型且最佳的可裂解添加剂。在此,我们引入了“链融合交联剂”(SFCs),它通过一种四路可裂解交联将两条网络链融合在一起。与使用传统可裂解共聚单体实现解构所需的摩尔负载量相比,SFCs能够以低至五分之一的摩尔负载量实现模型聚双环戊二烯(pDCPD)热固性材料的解构。SFCs在传统烘箱固化以及低能量前线开环易位聚合(FROMP)条件下均能发挥作用,并且与先前的可裂解共聚单体设计相比,能带来更好的热机械性能,例如玻璃化转变温度。这项工作推动了性能日益改进的可裂解添加剂的开发,以便在不损害材料性能的情况下实现热固性材料的解构。