Cramer Stig P, Hamrouni Nizar, Simonsen Helle J, Vestergaard Mark B, Varatharaj Aravinthan, Galea Ian, Lindberg Ulrich, Frederiksen Jette Lautrup, Larsson Henrik B W
Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
Front Neurosci. 2025 Mar 20;19:1546236. doi: 10.3389/fnins.2025.1546236. eCollection 2025.
Detecting multiple sclerosis (MS) relapses remains challenging due to symptom variability and confounding factors, such as flare-ups and infections. Methylprednisolone (MP) is used for severe relapses, decreasing the number of contrast-enhancing lesions on MRI. The influx constant (K) derived from dynamic contrast-enhanced MRI (DCE-MRI), a marker of blood-brain barrier (BBB) permeability, has shown promise as a predictor of disease activity in relapsing-remitting MS (RRMS).
To investigate the predictive value of K in relation to clinical MS relapses and MP treatment, comparing its performance with traditional MRI markers.
We studied 20 RRMS subjects admitted for possible relapse, using DCE-MRI on admission to assess K in normal-appearing white matter (NAWM) via the Patlak model. Mixed-effects modeling compared the predictive accuracy of K, the presence of contrast-enhancing lesions (CEL), evidence of brain lesions (EBL; defined as the presence of CEL or new T2 lesions), and MP treatment on clinical relapse events. Five models were evaluated, including combinations of K, CEL, EBL, and MP, to determine the most robust predictors of clinical relapse. Model performance was assessed using accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), with bootstrapped confidence intervals.
Superior predictive accuracy was demonstrated with the inclusion of EBL and K, alongside MP treatment (AIC = 66.12, = 0.006), outperforming other models with a classification accuracy of 83% (CI: 73-92%), sensitivity of 78% (CI: 60-94%), and specificity of 86% (CI: 74-97%). This model showed the highest combined PPV (78%, CI: 60-94%) and NPV (86%, CI: 74-98%) compared to models with EBL or CEL alone, suggesting an added value of K in enhancing predictive reliability.
These results support the use of K alongside conventional MRI imaging metrics, to improve clinical relapse prediction in RRMS. The findings underscore the utility of K as a marker of MS-related neuroinflammation, with potential for integration into relapse monitoring protocols. Further validation in larger cohorts is recommended to confirm the model's generalizability and clinical application.
由于症状的变异性和诸如病情突然加重及感染等混杂因素,检测多发性硬化症(MS)复发仍然具有挑战性。甲基泼尼松龙(MP)用于严重复发,可减少MRI上对比增强病灶的数量。动态对比增强MRI(DCE-MRI)得出的流入常数(K)是血脑屏障(BBB)通透性的一个标志物,已显示出有望作为复发缓解型MS(RRMS)疾病活动的预测指标。
研究K与临床MS复发及MP治疗的预测价值,并将其性能与传统MRI标志物进行比较。
我们研究了20名因可能复发而入院的RRMS患者,入院时使用DCE-MRI通过Patlak模型评估正常外观白质(NAWM)中的K。混合效应模型比较了K、对比增强病灶(CEL)的存在、脑病灶证据(EBL;定义为存在CEL或新的T2病灶)以及MP治疗对临床复发事件的预测准确性。评估了五个模型,包括K、CEL、EBL和MP的组合,以确定临床复发的最可靠预测指标。使用准确率、敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)以及自抽样置信区间评估模型性能。
纳入EBL和K以及MP治疗显示出更高的预测准确性(AIC = 66.12,P = 0.006),其分类准确率为83%(CI:73 - 92%)、敏感性为78%(CI:60 - 94%)、特异性为86%(CI:74 - 97%),优于其他模型。与单独使用EBL或CEL的模型相比,该模型显示出最高的综合PPV(78%,CI:60 - 94%)和NPV(86%,CI:74 - 98%),表明K在提高预测可靠性方面具有附加价值。
这些结果支持将K与传统MRI成像指标一起使用,以改善RRMS的临床复发预测。研究结果强调了K作为MS相关神经炎症标志物的效用,具有整合到复发监测方案中的潜力。建议在更大的队列中进行进一步验证,以确认该模型的普遍性和临床应用。