文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在组学分析中利用深度神经网络纳入先验知识的策略。

Strategies to include prior knowledge in omics analysis with deep neural networks.

作者信息

Thapa Kisan, Kinali Meric, Pei Shichao, Luna Augustin, Babur Özgün

机构信息

Computer Science Department, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA.

Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Bathesda, MD 20892, USA.

出版信息

Patterns (N Y). 2025 Mar 14;6(3):101203. doi: 10.1016/j.patter.2025.101203.


DOI:10.1016/j.patter.2025.101203
PMID:40182174
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11963003/
Abstract

High-throughput molecular profiling technologies have revolutionized molecular biology research in the past decades. One important use of molecular data is to make predictions of phenotypes and other features of the organisms using machine learning algorithms. Deep learning models have become increasingly popular for this task due to their ability to learn complex non-linear patterns. Applying deep learning to molecular profiles, however, is challenging due to the very high dimensionality of the data and relatively small sample sizes, causing models to overfit. A solution is to incorporate biological prior knowledge to guide the learning algorithm for processing the functionally related input together. This helps regularize the models and improve their generalizability and interpretability. Here, we describe three major strategies proposed to use prior knowledge in deep learning models to make predictions based on molecular profiles. We review the related deep learning architectures, including the major ideas in relatively new graph neural networks.

摘要

在过去几十年中,高通量分子谱分析技术彻底改变了分子生物学研究。分子数据的一个重要用途是使用机器学习算法预测生物体的表型和其他特征。由于深度学习模型能够学习复杂的非线性模式,它们在这项任务中越来越受欢迎。然而,将深度学习应用于分子谱分析具有挑战性,因为数据维度非常高且样本量相对较小,这会导致模型过拟合。一种解决方案是纳入生物学先验知识,以指导学习算法一起处理功能相关的输入。这有助于使模型正则化,并提高其泛化能力和可解释性。在这里,我们描述了为在深度学习模型中使用先验知识以基于分子谱进行预测而提出的三种主要策略。我们回顾了相关的深度学习架构,包括相对较新的图神经网络中的主要思想。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/e11dd171f9a3/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/dbd820e2ec57/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/f62341500939/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/bb87f41974ac/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/0fee712ae5c6/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/9206167aa43c/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/c7b0a548e28b/fx2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/8095b929f341/fx3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/d052042e78de/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/ce559c9def10/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/f755fe389aa5/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/c15cc7b8439d/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/a11c13d1c54e/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/e11dd171f9a3/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/dbd820e2ec57/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/f62341500939/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/bb87f41974ac/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/0fee712ae5c6/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/9206167aa43c/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/c7b0a548e28b/fx2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/8095b929f341/fx3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/d052042e78de/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/ce559c9def10/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/f755fe389aa5/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/c15cc7b8439d/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/a11c13d1c54e/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bd/11963003/e11dd171f9a3/gr10.jpg

相似文献

[1]
Strategies to include prior knowledge in omics analysis with deep neural networks.

Patterns (N Y). 2025-3-14

[2]
Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).

BMC Genomics. 2019-12-20

[3]
Amogel: a multi-omics classification framework using associative graph neural networks with prior knowledge for biomarker identification.

BMC Bioinformatics. 2025-3-28

[4]
Graph Neural Networks With Multiple Prior Knowledge for Multi-Omics Data Analysis.

IEEE J Biomed Health Inform. 2023-9

[5]
Geometric graph neural networks on multi-omics data to predict cancer survival outcomes.

Comput Biol Med. 2023-9

[6]
A deep neural network approach to predicting clinical outcomes of neuroblastoma patients.

BMC Med Genomics. 2019-12-20

[7]
Prior knowledge-guided multilevel graph neural network for tumor risk prediction and interpretation via multi-omics data integration.

Brief Bioinform. 2024-3-27

[8]
Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.

Methods Mol Biol. 2021

[9]
Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer.

Genome Med. 2021-3-11

[10]
A multimodal graph neural network framework for cancer molecular subtype classification.

BMC Bioinformatics. 2024-1-15

本文引用的文献

[1]
Deep learning-based approaches for multi-omics data integration and analysis.

BioData Min. 2024-10-2

[2]
Deep Learning in Gene Regulatory Network Inference: A Survey.

IEEE/ACM Trans Comput Biol Bioinform. 2024

[3]
Phenotype prediction using biologically interpretable neural networks on multi-cohort multi-omics data.

NPJ Syst Biol Appl. 2024-8-2

[4]
Prior knowledge-guided multilevel graph neural network for tumor risk prediction and interpretation via multi-omics data integration.

Brief Bioinform. 2024-3-27

[5]
A multimodal graph neural network framework for cancer molecular subtype classification.

BMC Bioinformatics. 2024-1-15

[6]
Autosurv: interpretable deep learning framework for cancer survival analysis incorporating clinical and multi-omics data.

NPJ Precis Oncol. 2024-1-5

[7]
A framework for considering prior information in network-based approaches to omics data analysis.

Proteomics. 2023-11

[8]
Predicting gene regulatory links from single-cell RNA-seq data using graph neural networks.

Brief Bioinform. 2023-9-22

[9]
GOAT: Gene-level biomarker discovery from multi-Omics data using graph ATtention neural network for eosinophilic asthma subtype.

Bioinformatics. 2023-10-3

[10]
Discovering the mechanism of action of drugs with a sparse explainable network.

EBioMedicine. 2023-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索