Li Yifan, Yao Zhiyuan, Wang Cheng, Wang Kefan, Gu Dawei, Wang Lei, Zou Yang, Ren Xiaoming
State Key Laboratory of Materials-Oriented Chemical Engineering and School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
School of Physical and Mathematical Science, Nanjing Tech University, Nanjing 211816, P. R. China.
Dalton Trans. 2025 Apr 28;54(17):7004-7013. doi: 10.1039/d5dt00330j.
In this study, a novel cathode material comprising VO/VO/VO@nitrogen-doped carbon nanosheets (denoted as VO2/V2O3/V6O13@N-C) with abundant oxygen vacancies was synthesised for aqueous zinc-ion batteries (AZIBs). The synthesis was achieved a self-sacrificial route utilising an organic-inorganic hybrid layered vanadate precursor, [(CH)NH]VO. The presence of oxygen vacancies and multiple heterostructures within the cathode facilitates the diffusion of Zn ions and provides additional active sites for electrochemical reactions. Furthermore, the nanosheet morphology and the nitrogen-doped carbon coating synergistically enhance the electronic conductivity of the cathode. Notably, during the charging and discharging processes, an opposing lattice expansion phenomenon (, positive negative expansion) occurs between the VO/VO and VO phases, leading to an "expansion counteraction" effect that effectively mitigates volumetric changes in the VO2/V2O3/V6O13@N-C cathode. Consequently, the VO2/V2O3/V6O13@N-C cathode exhibits outstanding rate performance and cycling stability. Specifically, the discharge capacity reaches 290.1 mA h g, with a remarkable capacity retention rate of 95.6% after 250 cycles at a current density of 0.2 A g. Furthermore, at a high current density of 5 A g, the cathode achieves a maximum discharge capacity of 198.2 mA h g and retains 86.5% of maximum capacity after 2000 cycles. This study not only proves that calcination of organic-inorganic hybrid layered vanadate is a promising approach for synthesizing high-performance vanadium oxide cathodes, but also presents the "expansion counteraction" strategy to tackle the issue of volume changes for vanadium oxide cathodes.
在本研究中,合成了一种用于水系锌离子电池(AZIBs)的新型阴极材料,其由具有丰富氧空位的VO/VO/VO@氮掺杂碳纳米片(表示为VO2/V2O3/V6O13@N-C)组成。该合成通过利用有机-无机杂化层状钒酸盐前驱体[(CH)NH]VO的自牺牲路线实现。阴极中氧空位和多个异质结构的存在促进了锌离子的扩散,并为电化学反应提供了额外的活性位点。此外,纳米片形态和氮掺杂碳涂层协同增强了阴极的电子导电性。值得注意的是,在充放电过程中,VO/VO和VO相之间会出现相反的晶格膨胀现象(即正膨胀和负膨胀),从而导致“膨胀抵消”效应,有效减轻了VO2/V2O3/V6O13@N-C阴极的体积变化。因此,VO2/V2O3/V6O13@N-C阴极表现出出色的倍率性能和循环稳定性。具体而言,放电容量达到290.1 mA h g,在0.2 A g的电流密度下循环250次后,容量保持率高达95.6%。此外,在5 A g的高电流密度下,该阴极实现了198.2 mA h g的最大放电容量,并在2000次循环后保持最大容量的86.5%。本研究不仅证明了有机-无机杂化层状钒酸盐的煅烧是合成高性能氧化钒阴极的一种有前景的方法,还提出了“膨胀抵消”策略来解决氧化钒阴极的体积变化问题。