Suppr超能文献

理解和预测人类世中的动物运动与分布。

Understanding and predicting animal movements and distributions in the Anthropocene.

作者信息

Gomez Sara, English Holly M, Bejarano Alegre Vanesa, Blackwell Paul G, Bracken Anna M, Bray Eloise, Evans Luke C, Gan Jelaine L, Grecian W James, Gutmann Roberts Catherine, Harju Seth M, Hejcmanová Pavla, Lelotte Lucie, Marshall Benjamin Michael, Matthiopoulos Jason, Mnenge AichiMkunde Josephat, Niebuhr Bernardo Brandao, Ortega Zaida, Pollock Christopher J, Potts Jonathan R, Russell Charlie J G, Rutz Christian, Singh Navinder J, Whyte Katherine F, Börger Luca

机构信息

CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.

School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.

出版信息

J Anim Ecol. 2025 Apr 4. doi: 10.1111/1365-2656.70040.

Abstract

Predicting animal movements and spatial distributions is crucial for our comprehension of ecological processes and provides key evidence for conserving and managing populations, species and ecosystems. Notwithstanding considerable progress in movement ecology in recent decades, developing robust predictions for rapidly changing environments remains challenging. To accurately predict the effects of anthropogenic change, it is important to first identify the defining features of human-modified environments and their consequences on the drivers of animal movement. We review and discuss these features within the movement ecology framework, describing relationships between external environment, internal state, navigation and motion capacity. Developing robust predictions under novel situations requires models moving beyond purely correlative approaches to a dynamical systems perspective. This requires increased mechanistic modelling, using functional parameters derived from first principles of animal movement and decision-making. Theory and empirical observations should be better integrated by using experimental approaches. Models should be fitted to new and historic data gathered across a wide range of contrasting environmental conditions. We need therefore a targeted and supervised approach to data collection, increasing the range of studied taxa and carefully considering issues of scale and bias, and mechanistic modelling. Thus, we caution against the indiscriminate non-supervised use of citizen science data, AI and machine learning models. We highlight the challenges and opportunities of incorporating movement predictions into management actions and policy. Rewilding and translocation schemes offer exciting opportunities to collect data from novel environments, enabling tests of model predictions across varied contexts and scales. Adaptive management frameworks in particular, based on a stepwise iterative process, including predictions and refinements, provide exciting opportunities of mutual benefit to movement ecology and conservation. In conclusion, movement ecology is on the verge of transforming from a descriptive to a predictive science. This is a timely progression, given that robust predictions under rapidly changing environmental conditions are now more urgently needed than ever for evidence-based management and policy decisions. Our key aim now is not to describe the existing data as well as possible, but rather to understand the underlying mechanisms and develop models with reliable predictive ability in novel situations.

摘要

预测动物的活动和空间分布对于我们理解生态过程至关重要,并且为保护和管理种群、物种及生态系统提供关键证据。尽管近几十年来运动生态学取得了显著进展,但针对快速变化的环境制定可靠的预测仍然具有挑战性。为了准确预测人为变化的影响,首先识别人类改造环境的决定性特征及其对动物运动驱动因素的影响至关重要。我们在运动生态学框架内回顾和讨论这些特征,描述外部环境、内部状态、导航和运动能力之间的关系。在新情况下制定可靠的预测需要模型从纯粹的相关方法转向动态系统视角。这需要增加机理建模,使用从动物运动和决策的第一原理推导出来的功能参数。理论和实证观察应该通过实验方法更好地结合起来。模型应该适用于在广泛不同环境条件下收集的新数据和历史数据。因此,我们需要一种有针对性的、经过监督的数据收集方法,扩大研究的分类群范围,并仔细考虑尺度和偏差问题以及机理建模。因此,我们告诫不要不加区分地无监督使用公民科学数据、人工智能和机器学习模型。我们强调将运动预测纳入管理行动和政策的挑战与机遇。野化和迁移计划提供了令人兴奋的机会,可以从新环境中收集数据,从而能够在不同背景和尺度下测试模型预测。特别是基于逐步迭代过程(包括预测和改进)的适应性管理框架,为运动生态学和保护工作提供了互利的令人兴奋的机会。总之,运动生态学正处于从描述性科学向预测性科学转变的边缘。鉴于在快速变化的环境条件下,基于证据的管理和政策决策比以往任何时候都更迫切需要可靠的预测,这是一个适时的进展。我们现在的关键目标不是尽可能好地描述现有数据,而是理解潜在机制,并在新情况下开发具有可靠预测能力的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验