高氧诱导胎儿气道平滑肌细胞衰老:线粒体活性氧和内质网应激的作用
Hyperoxia-induced senescence in fetal airway smooth muscle cells: role of mitochondrial reactive oxygen species and endoplasmic reticulum stress.
作者信息
Koloko Ngassie Maunick L, Thompson Michael A, Roos Benjamin B, Ayyalasomayajula Savita, Lagnado Antony B, Passos João F, Pabelick Christina M, Prakash Y S
机构信息
Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States.
Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States.
出版信息
Am J Physiol Lung Cell Mol Physiol. 2025 Jul 1;329(1):L1-L18. doi: 10.1152/ajplung.00348.2024. Epub 2025 Apr 4.
Premature infants are at higher risk for developing chronic lung diseases, especially following supplemental oxygen (hyperoxia) in early life. We previously demonstrated that moderate hyperoxia (<60% O) induces cellular senescence in fetal airway smooth muscle cells (fASM) and fibroblasts. However, the mechanisms underlying O-induced senescence are still under investigation. In this study we investigated the role of endoplasmic reticulum (ER) stress and mitochondrial dysfunction, using fASM cells exposed to 21% O (normoxia) vs. ∼50% O (hyperoxia). Normoxia or hyperoxia-exposed fASM were treated with the ER stress inhibitor salubrinal [12.5 μM], the antioxidant MitoQ [100 nM], or the mitochondrial fission inhibitor Mdivi-1 [10 μM]. Samples were harvested at , , and and analyzed for markers of senescence, oxidative stress, ER stress response, and mitochondrial dynamics using protein analysis and fluorescence microscopy. Hyperoxia enhanced senescence, upregulating multiple markers of DNA damage in particular, cyclin-dependent cell cycle regulator p21, cytosolic and mitochondrial reactive oxygen species (ROS) levels, mitochondria fragmentation, and anti-apoptosis B-cell lymphoma-extra large (Bcl-xL), while downregulating the proliferation marker Ki-67. Hyperoxia also activated all three ER stress pathways. However, the level of p21 and/or Bcl-xL was decreased in hyperoxia-exposed cells treated with the ER stress inhibitor salubrinal or the antioxidant MitoQ, but not the fission inhibitor Mdivi-1. These findings highlight the role of mitochondrial ROS and ER stress in hyperoxia-induced senescence of fASM and suggest that mitochondrial-targeted antioxidants and/or inhibitors of ER stress pathways can blunt the detrimental effects of hyperoxia in developing lungs. Supplemental O (hyperoxia) in premature infants detrimentally affects bronchial airways leading to increased senescence. Understanding the mechanisms by which hyperoxia initiates senescence in developing airways is critical for future therapeutic strategies. The current study showed that hyperoxia-induced senescence is mediated through increased mitochondrial reactive oxygen species and endoplasmic reticulum (ER) stress. ER stress inhibitors or mitochondria-targeted antioxidants may represent future therapies to blunt detrimental effects of supplemental oxygen in developing lungs.
早产儿患慢性肺病的风险更高,尤其是在生命早期接受补充氧气(高氧)之后。我们之前证明,中度高氧(<60%氧气)会诱导胎儿气道平滑肌细胞(fASM)和成纤维细胞发生细胞衰老。然而,氧气诱导衰老的潜在机制仍在研究中。在本研究中,我们使用暴露于21%氧气(常氧)与约50%氧气(高氧)的fASM细胞,研究了内质网(ER)应激和线粒体功能障碍的作用。将暴露于常氧或高氧的fASM用ER应激抑制剂水杨酰胺[12.5 μM]、抗氧化剂MitoQ[100 nM]或线粒体分裂抑制剂Mdivi-1[10 μM]处理。在[具体时间点1]、[具体时间点2]和[具体时间点3]采集样本,使用蛋白质分析和荧光显微镜分析衰老、氧化应激、ER应激反应和线粒体动力学的标志物。高氧增强了衰老,尤其上调了多种DNA损伤标志物、细胞周期蛋白依赖性细胞周期调节因子p21、胞质和线粒体活性氧(ROS)水平、线粒体碎片化以及抗凋亡的B细胞淋巴瘤-超大(Bcl-xL),同时下调了增殖标志物Ki-67。高氧还激活了所有三种ER应激途径。然而,在用ER应激抑制剂水杨酰胺或抗氧化剂MitoQ处理的高氧暴露细胞中,p21和/或Bcl-xL的水平降低,但在使用分裂抑制剂Mdivi-1处理的细胞中未降低。这些发现突出了线粒体ROS和ER应激在高氧诱导的fASM衰老中的作用,并表明线粒体靶向抗氧化剂和/或ER应激途径抑制剂可以减轻高氧对发育中肺部的有害影响。早产儿补充氧气(高氧)会对支气管气道产生有害影响,导致衰老增加。了解高氧在发育中的气道中引发衰老的机制对于未来的治疗策略至关重要。当前研究表明,高氧诱导的衰老通过增加线粒体活性氧和内质网(ER)应激介导。ER应激抑制剂或线粒体靶向抗氧化剂可能代表未来减轻补充氧气对发育中肺部有害影响的治疗方法。
相似文献
Am J Physiol Lung Cell Mol Physiol. 2025-7-1
Am J Physiol Lung Cell Mol Physiol. 2024-7-1
Biochim Biophys Acta Bioenerg. 2025-6-12
Am J Physiol Heart Circ Physiol. 2024-7-1
本文引用的文献
Nat Rev Mol Cell Biol. 2024-12
Am J Physiol Lung Cell Mol Physiol. 2024-7-1
Nat Rev Mol Cell Biol. 2024-12
Natl Vital Stat Rep. 2024-1
Am J Physiol Lung Cell Mol Physiol. 2023-12-1