Suppr超能文献

头颈癌的遗传、临床、生活方式及社会人口统计学风险因素:一项英国生物银行研究

Genetic, clinical, lifestyle and sociodemographic risk factors for head and neck cancer: A UK Biobank study.

作者信息

Tuomi Lisa, Parris Toshima Z, Rawshani Araz, Andersson Erik, Orozco Alina, Finizia Caterina

机构信息

Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Department of Otorhinolaryngology-Head and Neck Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.

出版信息

PLoS One. 2025 Apr 4;20(4):e0318889. doi: 10.1371/journal.pone.0318889. eCollection 2025.

Abstract

INTRODUCTION

Despite a steady decline in tobacco smoking, head and neck cancer (HNC) incidence rates are on the rise. Therefore, novel risk factors for HNC are needed to identify at-risk patients at an early stage. Here, we used genetic, clinical, lifestyle, and sociodemographic data from UK Biobank (UKB) to evaluate the relative importance of known risk factors for HNC and identify novel predictors of HNC risk.

METHODS

All participants in the UKB between 2006 and 2021 were stratified into HNC cases and controls at baseline (cases: n =  534; controls: n =  501833) or during follow-up (cases: n =  1587; controls: n =  500246). A cross-sectional description of risk factors (clinical characteristics, lifestyle and sociodemographic) for HNC at baseline was performed, followed by multivariate Cox regression analysis (adjusted for age and sex) and gradient boosting machine learning to determine the relative importance of predictors (phenotypic predictors and SNPs) of HNC development after baseline.

RESULTS

In addition to known risk factors for HNC (age, male sex, smoking and alcohol consumption habits, occupation), we show that smoking cessation at ≤ 40 years of age is the strongest predictor of HNC risk. Although SNPs may play a role in HNC development, a predictive model containing phenotypic variables and SNPs (C-index 0.75) did not significantly outperform a model containing the phenotypic predictors alone (C-index 0.73).

CONCLUSION

Taken together, this study demonstrates that phenotypic variables such as past tobacco smoking habits, occupation, facial pain, education, pulmonary function, and anthropometric measures can be used to predict HNC risk.

摘要

引言

尽管吸烟率持续下降,但头颈癌(HNC)的发病率却在上升。因此,需要确定HNC的新风险因素,以便在早期阶段识别高危患者。在此,我们使用了英国生物银行(UKB)的遗传、临床、生活方式和社会人口统计学数据,以评估已知HNC风险因素的相对重要性,并识别HNC风险的新预测因素。

方法

将2006年至2021年间UKB的所有参与者在基线时(病例:n = 534;对照:n = 501833)或随访期间(病例:n = 1587;对照:n = 500246)分层为HNC病例和对照。对基线时HNC的风险因素(临床特征、生活方式和社会人口统计学)进行横断面描述,随后进行多变量Cox回归分析(按年龄和性别调整)和梯度提升机器学习,以确定基线后HNC发生预测因素(表型预测因素和单核苷酸多态性)的相对重要性。

结果

除了已知的HNC风险因素(年龄、男性、吸烟和饮酒习惯、职业)外,我们发现40岁及以下戒烟是HNC风险的最强预测因素。尽管单核苷酸多态性可能在HNC发生中起作用,但包含表型变量和单核苷酸多态性的预测模型(C指数0.75)并不比仅包含表型预测因素的模型(C指数0.73)有显著优势。

结论

综上所述,本研究表明,过去的吸烟习惯、职业、面部疼痛、教育程度、肺功能和人体测量指标等表型变量可用于预测HNC风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e28a/11970685/cca87cfebeaa/pone.0318889.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验