Suppr超能文献

基于小波的多尺度时间插补的无源时间序列域适应

Source-free time series domain adaptation with wavelet-based multi-scale temporal imputation.

作者信息

Zhong Yingyi, Zhou Wen'an, Tao Liwen

机构信息

School of Computer Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China.

出版信息

Neural Netw. 2025 Aug;188:107428. doi: 10.1016/j.neunet.2025.107428. Epub 2025 Apr 2.

Abstract

Recent works on source-free domain adaptation (SFDA) for time series reveal the effectiveness of learning domain-invariant temporal dynamics on improving the cross-domain performance of the model. However, existing SFDA methods for time series mainly focus on modeling the original sequence, lacking the utilization of the multi-scale properties of time series. This may result in insufficient extraction of domain-invariant temporal patterns. Furthermore, previous multi-scale analysis methods typically ignore important frequency domain information during multi-scale division, leading to the limited ability for multi-scale time series modeling. To this end, we propose LEMON, a novel SFDA method for time series with wavelet-based multi-scale temporal imputation. It utilizes the discrete wavelet transform to decompose a time series into multiple scales, each with a distinct time-frequency resolution and specific frequency range, enabling full-spectrum utilization. To effectively transfer multi-scale temporal dynamics from the source domain to the target domain, we introduce a multi-scale temporal imputation module which assigns a deep neural network to perform the temporal imputation task on the sequence at each scale, learning scale-specific domain-invariant information. We further design an energy-based multi-scale weighting strategy, which adaptively integrates information from multiple scales based on the frequency distribution of the input data to improve the transfer performance of the model. Extensive experiments on three real-world time series datasets demonstrate that LEMON significantly outperforms the state-of-the-art methods, achieving an average improvement of 4.45% in accuracy and 6.29% in MF1-score.

摘要

近期关于时间序列的无源域适应(SFDA)的研究揭示了学习域不变时间动态对提高模型跨域性能的有效性。然而,现有的时间序列SFDA方法主要集中于对原始序列进行建模,缺乏对时间序列多尺度特性的利用。这可能导致域不变时间模式的提取不足。此外,先前的多尺度分析方法在多尺度划分过程中通常会忽略重要的频域信息,导致多尺度时间序列建模能力有限。为此,我们提出了LEMON,一种基于小波的多尺度时间插补的新型时间序列SFDA方法。它利用离散小波变换将时间序列分解为多个尺度,每个尺度具有独特的时频分辨率和特定的频率范围,从而实现全频谱利用。为了有效地将多尺度时间动态从源域转移到目标域,我们引入了一个多尺度时间插补模块,该模块分配一个深度神经网络对每个尺度的序列执行时间插补任务,学习特定尺度的域不变信息。我们进一步设计了一种基于能量的多尺度加权策略,该策略基于输入数据的频率分布自适应地整合来自多个尺度的信息,以提高模型的转移性能。在三个真实世界的时间序列数据集上进行的大量实验表明,LEMON显著优于现有方法,在准确率上平均提高了4.45%,在MF1分数上提高了6.29%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验