Qian Xiaoxue, Lu Weiguo, Zhang You
Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Med Phys. 2024 Dec;51(12):8865-8881. doi: 10.1002/mp.17423. Epub 2024 Oct 1.
In medical image segmentation, a domain gap often exists between training and testing datasets due to different scanners or imaging protocols, which leads to performance degradation in deep learning-based segmentation models. Given the high cost of manual labeling and the need for privacy protection, it is often challenging to annotate the testing (target) domain data for model fine-tuning or to collect data from different domains to train domain generalization models. Therefore, using only unlabeled target domain data for test-time adaptation (TTA) presents a more practical but challenging solution.
To improve the segmentation accuracy of deep learning-based models on unseen datasets, and especially to enhance the efficiency and stability of TTA for individual samples from heterogeneous domains.
In this study, we proposed to dynamically adapt a wavelet-VNet (WaVNet) to unseen target domains with a hybrid objective function, based on each unlabeled test sample during the test time. We embedded multiscale wavelet coefficients into a V-Net encoder and adaptively adjusted the spatial and spectral features according to the input, and the model parameters were optimized by three loss functions. We integrated a shape-aware loss to focus on the foreground segmentations, a Refine loss to correct the incomplete and noisy segmentations caused by domain shifts, and an entropy loss to promote the global consistency of the segmentations. We evaluated the proposed method on multidomain liver and prostate segmentation datasets to assess its advantages over other TTA methods. For the source domain model training of the liver dataset, we used 15 3D MR image samples for training and 5 for validation. Correspondingly, for the prostate dataset, we used 22 3D MR image samples for training and 7 for validation. In the target domain, we used a single 3D MR image sample for adaptation and testing. The total number of testing samples is 60 in the liver dataset (for 3 different domains) and 116 in the prostate dataset (for 6 different domains).
The proposed method showed the highest segmentation accuracy among all methods, achieving a mean (± SD) Dice coefficient (DSC) of 78.10 ± 5.23% and a mean 95th Hausdorff distance (HD95) of 15.52 ± 5.84 mm on the liver dataset; and a mean DSC of 80.02 ± 3.89% and a mean HD95 of 9.18 ± 3.47 mm on the prostate dataset. The DSC is 11.67% (in absolute terms) and 15.27% higher than that of the baseline (no adaptation) method, for the liver and the prostate datasets, respectively.
The proposed adaptive WaVNet enhanced the image segmentation accuracy from unseen domains during the test time via unsupervised learning and multi-objective optimization. It can benefit clinical applications where data are scarce or with changing data distributions, including online adaptive radiotherapy. The code will be released at: https://github.com/sanny1226/WaVNet.
在医学图像分割中,由于不同的扫描仪或成像协议,训练数据集和测试数据集之间常常存在域差距,这会导致基于深度学习的分割模型性能下降。鉴于手动标注成本高昂且需要保护隐私,为模型微调标注测试(目标)域数据或从不同域收集数据来训练域泛化模型通常具有挑战性。因此,仅使用未标注的目标域数据进行测试时自适应(TTA)是一种更实际但具有挑战性的解决方案。
提高基于深度学习的模型在未见数据集上的分割精度,特别是提高来自异构域的单个样本的TTA效率和稳定性。
在本研究中,我们提出在测试时基于每个未标注的测试样本,使用混合目标函数将小波-VNet(WaVNet)动态适配到未见目标域。我们将多尺度小波系数嵌入到V-Net编码器中,并根据输入自适应调整空间和光谱特征,模型参数通过三个损失函数进行优化。我们整合了一个形状感知损失以聚焦于前景分割,一个细化损失以纠正由域偏移导致的不完整和有噪声的分割,以及一个熵损失以促进分割的全局一致性。我们在多域肝脏和前列腺分割数据集上评估了所提出的方法,以评估其相对于其他TTA方法的优势。对于肝脏数据集的源域模型训练,我们使用15个3D MR图像样本进行训练,5个用于验证。相应地,对于前列腺数据集,我们使用22个3D MR图像样本进行训练,7个用于验证。在目标域中,我们使用单个3D MR图像样本进行适配和测试。肝脏数据集的测试样本总数为60个(针对3个不同域),前列腺数据集为116个(针对6个不同域)。
在所提出的方法在所有方法中显示出最高的分割精度,在肝脏数据集上实现了平均(±标准差)骰子系数(DSC)为78.10±5.23%,平均第95百分位豪斯多夫距离(HD95)为15.52±5.84毫米;在前列腺数据集上实现了平均DSC为80.02±3.89%,平均HD95为9.18±3.47毫米。对于肝脏和前列腺数据集,DSC分别比基线(无自适应)方法高11.67%(绝对值)和15.27%。
所提出的自适应WaVNet通过无监督学习和多目标优化提高了测试时来自未见域的图像分割精度。它可惠及数据稀缺或数据分布不断变化的临床应用,包括在线自适应放疗。代码将在以下网址发布:https://github.com/sanny1226/WaVNet。