Suppr超能文献

傅里叶变换红外光谱结合多种算法在乳腺癌诊断中的应用:一项系统综述。

Application of Fourier transform infrared spectroscopy on Breast cancer diagnosis combined with multiple algorithms: A systematic review.

作者信息

Anagaw Yeniewa Kerie, Bizuneh Gizachew Kassahun, Feleke Melaku Getahun, Limenh Liknaw Workie, Geremew Derso Teju, Worku Minichil Chanie, Mitku Melese Legesse, Dessie Misganaw Gashaw, Mekonnen Biset Asrade, Ayenew Wondim

机构信息

Department of Pharmaceutical Chemistry, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.

Department of Pharmacognosy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.

出版信息

Photodiagnosis Photodyn Ther. 2025 Jun;53:104579. doi: 10.1016/j.pdpdt.2025.104579. Epub 2025 Apr 2.

Abstract

INTRODUCTION

Fourier transform infrared (FT-IR) spectroscopy is an innovative diagnostic technique for improving early detection and personalized care for breast cancer patients. It allows rapid and accurate analysis of biological samples. Therefore, the purpose of this study was to assess the diagnostic accuracy of FT-IR spectroscopy for breast cancer, based on a comprehensive literature review.

METHODS

An online electronic database systematic search was conducted using PubMed/Medline, Cochrane Library, and hand databases from March 28, 2024, to April 10, 2024. We included peer-reviewed journal articles in which FT-IR spectroscopy was used to acquire data on breast cancers and manuscripts published in English. All eligible studies were assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool.

RESULTS

Serum, breast biopsies, blood plasma, specimen, and saliva samples were included in this study. This study revealed that breast cancer diagnosis using FT-IR spectroscopy with diagnostic algorithms had a sensitivity and specificity of approximately 98 % and 100 %, respectively. Almost all studies have used more than one algorithm to analyze spectral data. This finding showed that the sensitivity of FT-IR spectroscopy reported in six included studies was greater than 90 %.

CONCLUSION

Employing multivariate analysis coupled with FT-IR spectroscopy has shown promise in differentiating between healthy and cancerous breast tissue. This review revealed that FT-IR spectroscopy will be the next gold standard for breast cancer diagnosis. However, to draw definitive conclusions, larger-scale studies, external validation, real-world clinical trials, legislative considerations, and alternative methods such as Raman spectroscopy should be considered.

摘要

引言

傅里叶变换红外(FT-IR)光谱技术是一种创新的诊断技术,可用于改善乳腺癌患者的早期检测和个性化护理。它能够对生物样本进行快速准确的分析。因此,本研究旨在通过全面的文献综述来评估FT-IR光谱技术对乳腺癌的诊断准确性。

方法

于2024年3月28日至2024年4月10日,使用PubMed/Medline、Cochrane图书馆以及手工数据库进行在线电子数据库系统检索。我们纳入了使用FT-IR光谱技术获取乳腺癌数据的同行评审期刊文章以及以英文发表的手稿。所有符合条件的研究均使用诊断准确性研究质量评估(QUADAS)工具进行评估。

结果

本研究纳入了血清、乳腺活检组织、血浆、标本和唾液样本。该研究表明,使用带有诊断算法的FT-IR光谱技术诊断乳腺癌的敏感性和特异性分别约为98%和100%。几乎所有研究都使用了不止一种算法来分析光谱数据。这一发现表明,六项纳入研究中报告的FT-IR光谱技术的敏感性大于90%。

结论

采用多变量分析结合FT-IR光谱技术在区分健康乳腺组织和癌性乳腺组织方面显示出前景。本综述表明,FT-IR光谱技术将成为乳腺癌诊断的下一个金标准。然而,为得出明确结论,应考虑进行更大规模的研究、外部验证、真实世界临床试验、立法考量以及拉曼光谱等替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验