Suppr超能文献

基于TBM刀盘振动监测和深度学习模型的掌子面岩体类别快速识别

Tunnel face rock mass class rapid identification based on TBM cutterhead vibration monitoring and deep learning model.

作者信息

Tang Qisheng, Hu Qingsong, Wang Ganggang, Liu Xiangjin, Huang Puyue

机构信息

Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing, 100124, China.

Xinjiang Shuifa Construction Group Co., Ltd, Urumqi, 830000, Xinjiang, China.

出版信息

Sci Rep. 2025 Apr 4;15(1):11563. doi: 10.1038/s41598-025-96875-x.

Abstract

Rapid identification of the rock mass condition at the tunnel face is a key problem for TBM operating parameters optimization and subsequent tunnel support measures selection. The vibration induced by the rock breaking contains essential information for evaluating the tunnel face condition. However, conventional vibration-based methods face difficulties in continuously obtaining vibration records for long tunnel sections. Additionally, there's a lack of TBM cutterhead vibration monitoring, and they heavily depend on expertise and prior knowledge. In this study, an end-to-end deep learning (DL) method was developed for rock mass class identification of TBM tunnel working faces based on the measurement of TBM cutterhead vibration signals, including cutterhead vibration signal measurement, signal preprocessing, model training and optimization, and application verification. The model combines the advantages of 1DCNN, BiLSTM, and self-attention mechanisms, where the structural innovation of 1DCNN inspired by Inception v2 for multi-scale feature extraction. Which can automatically extract the spatial and temporal domain features in the signals to promptly identify the rock mass class at the working face without stopping the normal tunneling process. The accuracy on the test set is 95.89% compared to 85.34% for a traditional ML model, and it has better performance than other DL model architectures. The model underwent validation during subsequent TBM tunneling within the same project, successfully proving its practical reliability.

摘要

快速识别隧道掌子面的岩体状况是优化TBM运行参数及后续选择隧道支护措施的关键问题。破岩产生的振动包含评估隧道掌子面状况的关键信息。然而,传统的基于振动的方法在连续获取长隧道段振动记录方面存在困难。此外,缺乏对TBM刀盘振动的监测,且这些方法严重依赖专业知识和先验知识。在本研究中,基于TBM刀盘振动信号测量,开发了一种用于TBM隧道掌子面岩体类别识别的端到端深度学习(DL)方法,包括刀盘振动信号测量、信号预处理、模型训练与优化以及应用验证。该模型结合了一维卷积神经网络(1DCNN)、双向长短期记忆网络(BiLSTM)和自注意力机制的优点,其中1DCNN的结构创新灵感来自Inception v2用于多尺度特征提取。它能够自动提取信号中的时空域特征,从而在不停止正常掘进过程的情况下迅速识别掌子面的岩体类别。与传统机器学习模型85.34%的准确率相比,该模型在测试集上的准确率为95.89%,并且其性能优于其他深度学习模型架构。该模型在同一项目后续的TBM掘进过程中进行了验证,成功证明了其实际可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0749/11971402/9a669666f596/41598_2025_96875_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验