Gao Tengyuan, Liu Xiufan, Wang Kai, Wang Juan, Wu Xinhe, Wang Guohong
Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
J Colloid Interface Sci. 2025 Aug 15;692:137475. doi: 10.1016/j.jcis.2025.137475. Epub 2025 Mar 29.
Covalent organic frameworks (COFs)-based S-scheme heterojunction photocatalysts have gained considerable attention for photocatalytic hydrogen evolution. However, challenges such as limited interfacial contact and low stability persist, primarily due to uneven inorganic semiconductor coverage on the COFs surface. Therefore, constructing inorganic-organic S-scheme heterojunction photocatalysts via the in-situ growth of COFs on inorganic semiconductor surfaces shows great promise. Herein, we successfully developed a sponge-like TiO@BTTA S-scheme heterojunction with a tight contact interface by in-situ growing COF (referred to as BTTA) on the surface of sponge-like TiO (referred to as ST). Density Functional Theory (DFT) calculations confirmed that the ST@BTTA hybrids exhibit the optimal adsorption and desorption capabilities for HO and H molecules, respectively. Notably, the ST@BTTA-120 S-scheme heterojunction photocatalyst demonstrates an outstanding hydrogen production rate under simulated sunlight irradiation, surpassing pristine ST and BTTA by factors of 10.3 and 2.6, respectively. The enhanced photocatalytic performance is attributed to improved solar energy utilization efficiency, a larger specific surface area, and an increased interfacial contact area between ST and BTTA. X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) analyses further verify the S-scheme carrier transfer mechanism in the ST@BTTA hybrids. This research provides a valuable method for designing efficient S-scheme heterojunction photocatalysts with closely integrated interfaces for photocatalytic hydrogen production via water splitting.
基于共价有机框架(COFs)的S型异质结光催化剂在光催化析氢方面受到了广泛关注。然而,由于COFs表面无机半导体覆盖不均匀,仍然存在诸如界面接触有限和稳定性低等挑战。因此,通过在无机半导体表面原位生长COFs来构建无机-有机S型异质结光催化剂具有很大的潜力。在此,我们通过在海绵状TiO(简称ST)表面原位生长COF(简称BTTA),成功开发了一种具有紧密接触界面的海绵状TiO@BTTA S型异质结。密度泛函理论(DFT)计算证实,ST@BTTA杂化物分别对HO和H分子表现出最佳的吸附和解吸能力。值得注意的是,ST@BTTA-120 S型异质结光催化剂在模拟太阳光照射下表现出出色的产氢速率,分别比原始的ST和BTTA高出10.3倍和2.6倍。光催化性能的提高归因于太阳能利用效率的提高、更大的比表面积以及ST和BTTA之间界面接触面积的增加。X射线光电子能谱(XPS)和电子自旋共振(ESR)分析进一步证实了ST@BTTA杂化物中的S型载流子转移机制。这项研究为设计具有紧密集成界面的高效S型异质结光催化剂提供了一种有价值的方法,用于通过水分解进行光催化析氢。