Du Juan, Cai Tianfeng, Han Qiao, Wu Hongda, Zhao Qing, Zheng Lufan, Liu Shuo, Yang Zhanxu
School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001 Liaoning, China.
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.
J Colloid Interface Sci. 2025 Aug 15;692:137470. doi: 10.1016/j.jcis.2025.137470. Epub 2025 Mar 29.
The hydrogen spillover is considered a powerful strategy for improving the kinetics of hydrogen evolution reaction (HER) due to the decoupling of hydrogen adsorption and desorption. However, the hydrogen spillover rate strongly depends on the metal-support interfaces, and the Fermi levels (E) difference between metal and support hinders the occurrence of hydrogen spillover. Here, we prepared platinum (Pt) doped on molybdenum disulfide (MoS) with sulfur vacancies (Sv) catalyst (Pt/Sv-MoS) and investigated the internal relationship between metal-support interfaces and hydrogen spillover mechanism. The experimental and theoretical results show that sulfur (S) vacancies reduce the work function (ΔΦ) at the metal-support interface, thus accelerating the migration rate of hydrogen from Pt to Sv-MoS. Meanwhile, the introduction of S vacancies promotes the high dispersion of Pt nanoparticles (Pt NPs) and weakens the electron supply from Pt to MoS, facilitating active hydrogen (*H) adsorption step and thus increasing the hydrogen coverage on the Pt sites. Consequently, the prepared Pt/Sv-MoS catalyst exhibited significantly enhanced HER activity, achieving an overpotential of 26 mV at 10 mA·cm and a Tafel slope of only 28 mV·dec, which is superior to commercial 20 % Pt/C.
由于氢吸附和解吸的解耦,氢溢流被认为是改善析氢反应(HER)动力学的一种有效策略。然而,氢溢流速率强烈依赖于金属-载体界面,并且金属与载体之间的费米能级(E)差异阻碍了氢溢流的发生。在此,我们制备了掺杂有硫空位(Sv)的负载在二硫化钼(MoS)上的铂(Pt)催化剂(Pt/Sv-MoS),并研究了金属-载体界面与氢溢流机制之间的内在关系。实验和理论结果表明,硫(S)空位降低了金属-载体界面处的功函数(ΔΦ),从而加速了氢从Pt向Sv-MoS的迁移速率。同时,S空位的引入促进了Pt纳米颗粒(Pt NPs)的高度分散,并减弱了从Pt到MoS的电子供应,有利于活性氢(*H)的吸附步骤,从而增加了Pt位点上的氢覆盖率。因此,所制备的Pt/Sv-MoS催化剂表现出显著增强的HER活性,在10 mA·cm时过电位为26 mV,塔菲尔斜率仅为28 mV·dec,优于商业20% Pt/C。