Suppr超能文献

MetaGP:一种整合电子健康记录和多模态成像以满足未满足临床需求的生成式基础模型。

MetaGP: A generative foundation model integrating electronic health records and multimodal imaging for addressing unmet clinical needs.

作者信息

Liu Fei, Zhou Hongyu, Wang Kai, Yu Yunfang, Gao Yuanxu, Sun Zhuo, Liu Sian, Sun Shanshan, Zou Zixing, Li Zhuomin, Li Bingzhou, Miao Hanpei, Liu Yang, Hou Taiwa, Fok Manson, Patil Nivritti Gajanan, Xue Kanmin, Li Ting, Oermann Eric, Yin Yun, Duan Lian, Qu Jia, Huang Xiaoying, Jin Shengwei, Zhang Kang

机构信息

Institute for AI in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China; State Key Laboratory of Eye Health, Eye Hospital and Institute for Advanced Study on Eye Health and Diseases, Wenzhou Medical University, Wenzhou, China; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau SAR 999078, China.

Institute for AI in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China.

出版信息

Cell Rep Med. 2025 Apr 15;6(4):102056. doi: 10.1016/j.xcrm.2025.102056. Epub 2025 Apr 4.

Abstract

Artificial intelligence makes strides in specialized diagnostics but faces challenges in complex clinical scenarios, such as rare disease diagnosis and emergency condition identification. To address these limitations, we develop Meta General Practitioner (MetaGP), a 32-billion-parameter generative foundation model trained on extensive datasets, including over 8 million electronic health records, biomedical literature, and medical textbooks. MetaGP demonstrates robust diagnostic capabilities, achieving accuracy comparable to experienced clinicians. In rare disease cases, it achieves an average diagnostic score of 1.57, surpassing GPT-4's 0.93. For emergency conditions, it improves diagnostic accuracy for junior and mid-level clinicians by 53% and 46%, respectively. MetaGP also excels in generating medical imaging reports, producing high-quality outputs for chest X-rays and computed tomography, often rated comparable to or superior to physician-authored reports. These findings highlight MetaGP's potential to transform clinical decision-making across diverse medical contexts.

摘要

人工智能在专业诊断方面取得了进展,但在复杂的临床场景中面临挑战,如罕见病诊断和紧急情况识别。为了克服这些局限性,我们开发了Meta全科医生(MetaGP),这是一个拥有320亿参数的生成式基础模型,在包括800多万份电子健康记录、生物医学文献和医学教科书在内的大量数据集上进行训练。MetaGP展示了强大的诊断能力,其准确性可与经验丰富的临床医生相媲美。在罕见病病例中,它的平均诊断分数为1.57,超过了GPT-4的0.93。对于紧急情况,它分别将初级和中级临床医生的诊断准确率提高了53%和46%。MetaGP在生成医学影像报告方面也表现出色,为胸部X光和计算机断层扫描生成高质量的输出,其评分通常与医生撰写的报告相当或更高。这些发现凸显了MetaGP在不同医疗环境中改变临床决策的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8994/12047458/7b1d9920093f/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验