Liang Yueting, Sui Xin, Li Shuai, Peng Haoxin, Jiang Wenyi, Jia Minqi, Jiang Shaoran, Wang Weihu, Teng Huajing
Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
Biomark Res. 2025 Apr 5;13(1):54. doi: 10.1186/s40364-025-00770-6.
Pancreatic adenocarcinoma (PAAD) is a highly lethal malignancy that leads to patients missing optimal treatment opportunities due to its atypical clinical symptoms and the lack of effective diagnostic biomarkers. To develop a biomarker panel based on extracellular vesicle-derived transposable elements (EV-TEs) for non-invasive detection of PAAD, we analyzed 6.75 Tbp sequencing data of 852 EV-derived transcriptomes from two cohorts, and identified 31 EV-TEs features as the biomarker panel using recursive feature elimination. Predictive model constructed using the Support Vector Machine (SVM) algorithm demonstrated excellent performance for PAAD detection in the training set (AUC: 0.90, 95% CI: 0.86-0.93), the test set (AUC: 0.86, 95% CI: 0.79-0.92) and the independent external validation cohort of blood EV-derived samples (AUC: 0.88, 95% CI: 0.84-0.92). This study presents the first EV-TEs based predictive model for PAAD detection, showcasing the immense potential of these 'junk DNA' as innovative diagnostic biomarker for cancers.
胰腺腺癌(PAAD)是一种高度致命的恶性肿瘤,由于其非典型的临床症状以及缺乏有效的诊断生物标志物,导致患者错过最佳治疗时机。为了开发一种基于细胞外囊泡衍生转座元件(EV-TEs)的生物标志物组合用于PAAD的无创检测,我们分析了来自两个队列的852个EV衍生转录组的6.75 Tbp测序数据,并使用递归特征消除法将31个EV-TEs特征鉴定为生物标志物组合。使用支持向量机(SVM)算法构建的预测模型在训练集(AUC:0.90,95%CI:0.86-0.93)、测试集(AUC:0.86,95%CI:0.79-0.92)以及血液EV衍生样本的独立外部验证队列(AUC:0.88,95%CI:0.84-0.92)中对PAAD检测表现出优异的性能。本研究提出了首个基于EV-TEs的PAAD检测预测模型,展示了这些“垃圾DNA”作为癌症创新诊断生物标志物的巨大潜力。