Suppr超能文献

用于评估纳米发电机结构设计的可解释机器学习

Interpretable Machine Learning for Evaluating Nanogenerators' Structural Design.

作者信息

Han Chi, Jin Mingyu, Dong Fuying, Xu Pengchong, Jiang Xinnian, Cai Sheling T, Jiang Yuanwen, Zhang Yongfeng, Fang Yin, Niu Simiao

机构信息

Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States.

Department of Computer Science, Rutgers University, Piscataway, New Jersey 08854, United States.

出版信息

ACS Nano. 2025 Apr 15;19(14):14456-14466. doi: 10.1021/acsnano.5c02525. Epub 2025 Apr 7.

Abstract

The limited battery life in modern mobile, wearable, and implantable electronics critically constrains their operational longevity and continuous use. Consequently, as a self-powered technology, triboelectric nanogenerators (TENGs) have emerged as a promising solution to this. Traditional approaches for evaluating TENG structural design typically require manual, repetitive, time-consuming, and high-cost finite element modeling or experiments. To overcome this bottleneck, we developed a fully automated platform that leverages machine learning (ML) techniques. Our framework contains an artificial neuron network-based surrogate model that can provide accurate and reliable performance predictions for any structural parameters and a TreeSHAP interpretable ML model that can generate precise global and local insights for TENG structural parameters. Our platform shows broad adaptability to multiple TENG structures. In summary, our platform is an integrated platform that utilizes interpretable ML techniques to solve the complex multidimensional TENG structural evaluation problem, marking a significant advancement in TENG design and supporting sustainable energy solutions in mobile electronics.

摘要

现代移动、可穿戴和植入式电子产品有限的电池寿命严重限制了它们的运行寿命和持续使用。因此,作为一种自供电技术,摩擦纳米发电机(TENG)已成为解决这一问题的一个有前景的方案。传统的评估TENG结构设计的方法通常需要人工、重复、耗时且成本高昂的有限元建模或实验。为了克服这一瓶颈,我们开发了一个利用机器学习(ML)技术的全自动平台。我们的框架包含一个基于人工神经网络的代理模型,它可以为任何结构参数提供准确可靠的性能预测,以及一个TreeSHAP可解释ML模型,它可以为TENG结构参数生成精确的全局和局部见解。我们的平台对多种TENG结构具有广泛的适应性。总之,我们的平台是一个利用可解释ML技术解决复杂多维TENG结构评估问题的集成平台,标志着TENG设计的重大进步,并支持移动电子产品中的可持续能源解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e6b/12333421/54d10da1f58f/nn5c02525_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验