Suppr超能文献

生成式人工智能:历史视角

Generative artificial intelligence: a historical perspective.

作者信息

He Ran, Cao Jie, Tan Tieniu

机构信息

New Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.

School of Intelligence Science and Technology, Nanjing University, Nanjing 210008, China.

出版信息

Natl Sci Rev. 2025 Feb 21;12(5):nwaf050. doi: 10.1093/nsr/nwaf050. eCollection 2025 May.

Abstract

Generative artificial intelligence (GAI) has recently achieved significant success, enabling anyone to create texts, images, videos and even computer codes while providing insights that might not be possible with traditional tools. To stimulate future research, this work provides a brief summary of the ongoing and historical developments in GAI over the past 70 years. The achievements are grouped into four categories: (i) rule-based generative systems that follow specialized rules and instructions, (ii) model-based generative algorithms that produce new content based on statistical or graphical models, (iii) deep generative methodologies that utilize deep neural networks to learn how to generate new content from data and (iv) foundation models that are trained on extensive datasets and capable of performing a variety of generative tasks. This paper also reviews successful generative applications and identifies open challenges posed by remaining issues. In addition, this paper describes potential research directions aimed at better utilizing, understanding and harnessing GAI technologies.

摘要

生成式人工智能(GAI)最近取得了重大成功,使任何人都能够创建文本、图像、视频甚至计算机代码,同时提供传统工具可能无法提供的见解。为了推动未来的研究,本文简要总结了过去70年中GAI的发展历程和最新进展。这些成就分为四类:(i)基于规则的生成系统,遵循特定的规则和指令;(ii)基于模型的生成算法,基于统计或图形模型生成新内容;(iii)深度生成方法,利用深度神经网络学习如何从数据中生成新内容;(iv)基础模型,在大量数据集上进行训练,能够执行各种生成任务。本文还回顾了成功的生成应用,并指出了遗留问题带来的开放挑战。此外,本文还描述了旨在更好地利用、理解和应用GAI技术的潜在研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f38/11970245/8aeef96a7e48/nwaf050fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验