Suppr超能文献

[使用生成式人工智能和无代码工具进行网络荟萃分析指南]

[A Guide to Network Meta-Analysis Using Generative AI and No-Code Tools].

作者信息

Liu Jen-Wei

机构信息

PhD, Director, Department of Pharmacy, Fu Jen Catholic University Hospital, Fu Jen Catholic University, Taiwan, ROC.

出版信息

Hu Li Za Zhi. 2024 Oct;71(5):29-35. doi: 10.6224/JN.202410_71(5).05.

Abstract

Network meta-analysis (NMA), an increasingly appealing method of statistical analysis, is superior to traditional analysis methods in terms of being able to compare multiple medical treatment methods in one analysis run. In recent years, the prevalence of NMA in the medical literature has increased significantly, while advances in NMA-related statistical methods and software tools continue to improve the effectiveness of this approach. Various commercial and free statistical software packages, some of which employ generative artificial intelligence (GAI) to generate code, have been developed for NMA, leading to numerous innovative developments. In this paper, the use of generative AI for writing R programming language scripts and the netmeta package for performing NMA are introduced. Also, the web-based tool ShinyNMA is introduced. ShinyNMA allows users to conduct NMA using an intuitive "clickable" interface accessible via a standard web browser, with visual charts employed to present results. In the first section, we detail the netmeta package documentation and use ChatGPT (chat generative pre-trained transformer) to write the R scripts necessary to perform NMA with the netmeta package. In the second section, a user interface is developed using the Shiny package to create a ShinyNMA tool. This tool provides a no-code option for users unfamiliar with programming to conduct NMA statistical analysis and plotting. With appropriate prompts, ChatGPT can produce R scripts capable of performing NMA. Using this approach, an NMA analysis tool is developed that meets the research objectives, and potential applications are demonstrated using sample data. Using generative AI and existing statistical packages or no-code tools is expected to make conducting NMA analysis significantly easier for researchers. Moreover, greater access to results generated by NMA analyses will enable decision-makers to review analysis results intuitively in real-time, enhancing the importance of statistical analysis in medical decision-making. Furthermore, enabling non-specialists to conduct clinically meaningful systematic reviews may be expected to sustainably improve analytical capabilities and produce higher-quality evidence.

摘要

网络荟萃分析(NMA)是一种越来越有吸引力的统计分析方法,在一次分析中能够比较多种医学治疗方法,这一点优于传统分析方法。近年来,NMA在医学文献中的应用显著增加,同时与NMA相关的统计方法和软件工具的进步不断提高了这种方法的有效性。已经为NMA开发了各种商业和免费的统计软件包,其中一些使用生成式人工智能(GAI)来生成代码,带来了众多创新发展。本文介绍了使用生成式人工智能编写R编程语言脚本以及使用netmeta包进行NMA的方法。此外,还介绍了基于网络的工具ShinyNMA。ShinyNMA允许用户通过标准网络浏览器可访问的直观“可点击”界面进行NMA,并使用可视化图表展示结果。在第一部分,我们详细介绍netmeta包文档,并使用ChatGPT(聊天生成预训练变换器)编写使用netmeta包进行NMA所需的R脚本。在第二部分,使用Shiny包开发用户界面以创建ShinyNMA工具。该工具为不熟悉编程的用户提供了无代码选项来进行NMA统计分析和绘图。通过适当的提示,ChatGPT可以生成能够执行NMA的R脚本。使用这种方法,开发了一个满足研究目标的NMA分析工具,并使用样本数据展示了潜在应用。使用生成式人工智能和现有的统计软件包或无代码工具预计将使研究人员进行NMA分析变得明显更容易。此外,更多地获取NMA分析产生的结果将使决策者能够直观地实时审查分析结果,增强统计分析在医学决策中的重要性。此外,预计使非专业人员能够进行具有临床意义的系统评价可能会持续提高分析能力并产生更高质量的证据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验