文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Amino Acid-Based Hydrogel with Interpenetrating Gelatin and Cross-Linked by Metal Ions, Providing High Stretchability and Motion Sensitivity.

作者信息

Khodami Samaneh, Kaniewska Klaudia, Romanski Jan, Karbarz Marcin, Stojek Zbigniew

机构信息

University of Warsaw, Faculty of Chemistry, 1 Pasteura Str., Warsaw 02-093, Poland.

Biological and Chemical Research Center, University of Warsaw, 101 Żwirki I Wigury Av., PL, Warsaw 02-089, Poland.

出版信息

ACS Omega. 2025 Mar 17;10(12):12062-12075. doi: 10.1021/acsomega.4c10083. eCollection 2025 Apr 1.


DOI:10.1021/acsomega.4c10083
PMID:40191295
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11966301/
Abstract

A double network structure with metal ions was created to enhance the mechanical stability of the hydrogels and increase their low conductivity. For this purpose, the P(AM_AcOr_Gelatin) hydrogel was synthesized by combining gelatin, a biocompatible polymer, -δ-acryloyl-ornithine (AcOr), an amino acid derivative, and acrylamide (AM). Because the amino acid-based monomer added charged groups to the hydrogel network, the hydrogel exhibited improved conductivity and motion sensitivity properties compared with polyacrylamide (PAM) hydrogels. Furthermore, we altered the P(AM_AcOr_Gelatin) hydrogel by introducing the Fe and Cu ions, resulting in the formation of the P(AM_AcOr_Gelatin)-Fe and P(AM_AcOr_Gelatin)-Cu hydrogels. The hydrogels containing metal ions had coordination bonds between the ions, gelatin, and AcOr. Additionally, there were other noncovalent bonds present, resulting in further increased conductivity (approximately 95% improvement) and stretchability (more than double). The conductivity and resistance of the hydrogels changed, depending on the bending position and strain applied to the hydrogel layer. The results demonstrated that the hydrogel layer had good strain sensitivity, with an enhanced gauge factor (GF) of approximately 1.7 (at 250% strain) and a conductivity ranging from 3355 to 4387 μS·cm.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/c40c98b092b8/ao4c10083_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/bbd10ee46de8/ao4c10083_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/454ae3743200/ao4c10083_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/af722106127d/ao4c10083_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/57183e1fadf6/ao4c10083_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/990ba0d77a62/ao4c10083_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/367a1b39ae01/ao4c10083_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/6396c169ba55/ao4c10083_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/5cb592214afa/ao4c10083_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/7e1904b2d4b9/ao4c10083_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/a39c85665ea9/ao4c10083_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/c40c98b092b8/ao4c10083_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/bbd10ee46de8/ao4c10083_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/454ae3743200/ao4c10083_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/af722106127d/ao4c10083_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/57183e1fadf6/ao4c10083_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/990ba0d77a62/ao4c10083_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/367a1b39ae01/ao4c10083_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/6396c169ba55/ao4c10083_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/5cb592214afa/ao4c10083_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/7e1904b2d4b9/ao4c10083_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/a39c85665ea9/ao4c10083_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/11966301/c40c98b092b8/ao4c10083_0011.jpg

相似文献

[1]
Amino Acid-Based Hydrogel with Interpenetrating Gelatin and Cross-Linked by Metal Ions, Providing High Stretchability and Motion Sensitivity.

ACS Omega. 2025-3-17

[2]
Ultra-Stretchable, Adhesive, Conductive, and Antifreezing Multinetwork Borate Ester-Based Hydrogel for Wearable Strain Sensor and VOC Absorption.

ACS Sens. 2024-10-25

[3]
An Antibacterial, Highly Sensitive Strain Sensor Based on an Anionic Copolymer Interpenetrating with κ-Carrageenan.

ACS Biomater Sci Eng. 2024-9-9

[4]
A synergistic enhancement strategy for mechanical and conductive properties of hydrogels with dual ionically cross-linked κ-carrageenan/poly(sodium acrylate-co-acrylamide) network.

Carbohydr Polym. 2024-12-15

[5]
A chitosan-based conductive double network hydrogel doped by tannic acid-reduced graphene oxide with excellent stretchability and high sensitivity for wearable strain sensors.

Int J Biol Macromol. 2024-2

[6]
Chitosan-based double cross-linked ionic hydrogels as a strain and pressure sensor with broad strain-range and high sensitivity.

J Mater Chem B. 2022-5-11

[7]
Injectable and moldable hydrogels for use in sensitive and wide range strain sensing applications.

Biopolymers. 2020-6

[8]
A light-responsive wound dressing hydrogel: Gelatin based self-healing interpenetrated network with metal-ligand interaction by ferric citrate.

J Photochem Photobiol B. 2023-8

[9]
High Strength, Conductivity, and Bacteriostasis of the P(AM--AA)/Chitosan Quaternary Ammonium Salt Composite Hydrogel through Ionic Crosslinking and Hydrogen Bonding.

Langmuir. 2023-6-27

[10]
Highly Adhesive, Stretchable, and Antifreezing Hydrogel with Excellent Mechanical Properties for Sensitive Motion Sensors and Temperature-/Humidity-Driven Actuators.

ACS Appl Mater Interfaces. 2022-8-24

本文引用的文献

[1]
Multifunctional, High-Strength Electronic Skin Based on the Natural Sheepskin Fiber Network for Multifaceted Human Health Monitoring and Management.

Biomacromolecules. 2024-8-12

[2]
Collagen fiber-reinforced, tough and adaptive conductive organohydrogel e-skin for multimodal sensing applications.

J Mater Chem B. 2024-7-17

[3]
Bimodal Intelligent Electronic Skin Based on Proximity and Tactile Interaction for Pressure and Configuration Perception.

ACS Sens. 2024-4-26

[4]
Amino acid-induced rapid gelation and mechanical reinforcement of hydrogels with low-hysteresis and self-recoverable and fatigue-resistant properties.

Mater Horiz. 2023-10-2

[5]
Self-Healable, Adhesive, Anti-Drying, Freezing-Tolerant, and Transparent Conductive Organohydrogel as Flexible Strain Sensor, Triboelectric Nanogenerator, and Skin Barrier.

ACS Appl Mater Interfaces. 2023-8-30

[6]
Antibacterial self-healing bilayer dressing for epidermal sensors and accelerate wound repair.

Carbohydr Polym. 2023-11-1

[7]
Strong, Tough, and Anti-Swelling Supramolecular Conductive Hydrogels for Amphibious Motion Sensors.

Small. 2023-11

[8]
Highly Stretchable, Ultra-Sensitive, and Self-Healable Multifunctional Flexible Conductive Hydrogel Sensor for Motion Detection and Information Transmission.

ACS Appl Mater Interfaces. 2023-6-21

[9]
Engineering Smart Composite Hydrogels for Wearable Disease Monitoring.

Nanomicro Lett. 2023-4-15

[10]
Novel Uracil-Functionalized Poly(ionic liquid) Hydrogel: Highly Stretchable and Sensitive as a Direct Wearable Ionic Skin for Human Motion Detection.

ACS Appl Mater Interfaces. 2023-3-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索