Sun Zhiyuan, Dong Chao, Chen Bingda, Li Wenbo, Hu Huiyuan, Zhou Jinsheng, Li Chong, Huang Zhandong
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518000, P. R. China.
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Small. 2023 Nov;19(44):e2303612. doi: 10.1002/smll.202303612. Epub 2023 Jul 2.
Conductive polymer hydrogels (CPHs) are widely employed in emerging flexible electronic devices because they possess both the electrical conductivity of conductors and the mechanical properties of hydrogels. However, the poor compatibility between conductive polymers and the hydrogel matrix, as well as the swelling behavior in humid environments, greatly compromises the mechanical and electrical properties of CPHs, limiting their applications in wearable electronic devices. Herein, a supramolecular strategy to develop a strong and tough CPH with excellent anti-swelling properties by incorporating hydrogen, coordination bonds, and cation-π interactions between a rigid conducting polymer and a soft hydrogel matrix is reported. Benefiting from the effective interactions between the polymer networks, the obtained supramolecular hydrogel has homogeneous structural integrity, exhibiting remarkable tensile strength (1.63 MPa), superior elongation at break (453%), and remarkable toughness (5.5 MJ m ). As a strain sensor, the hydrogel possesses high electrical conductivity (2.16 S m ), a wide strain linear detection range (0-400%), and excellent sensitivity (gauge factor = 4.1), sufficient to monitor human activities with different strain windows. Furthermore, this hydrogel with high swelling resistance has been successfully applied to underwater sensors for monitoring frog swimming and underwater communication. These results reveal new possibilities for amphibious applications of wearable sensors.
导电聚合物水凝胶(CPHs)因其兼具导体的导电性和水凝胶的机械性能,而被广泛应用于新兴的柔性电子器件中。然而,导电聚合物与水凝胶基质之间较差的相容性,以及在潮湿环境中的溶胀行为,极大地损害了CPHs的机械和电学性能,限制了它们在可穿戴电子器件中的应用。在此,本文报道了一种超分子策略,通过在刚性导电聚合物和柔软水凝胶基质之间引入氢键、配位键和阳离子-π相互作用,来开发一种具有优异抗溶胀性能的强韧CPH。得益于聚合物网络之间的有效相互作用,所制备的超分子水凝胶具有均匀的结构完整性,表现出显著的拉伸强度(1.63MPa)、优异的断裂伸长率(453%)和出色的韧性(5.5MJ m)。作为应变传感器,该水凝胶具有高电导率(2.16S m)、宽应变线性检测范围(0-400%)和优异的灵敏度(应变片系数=4.1),足以监测不同应变窗口下的人体活动。此外,这种具有高抗溶胀性的水凝胶已成功应用于水下传感器,用于监测青蛙游泳和水下通信。这些结果揭示了可穿戴传感器在两栖应用方面的新可能性。
ACS Appl Mater Interfaces. 2020-11-25
ACS Appl Mater Interfaces. 2018-4-12
Biosensors (Basel). 2025-6-27
Exploration (Beijing). 2024-3-14
Nanomaterials (Basel). 2024-8-27