Suppr超能文献

慢性淋巴细胞白血病预后因素的多变量分析

Multivariate analysis of prognostic factors in chronic lymphocytic leukemia.

作者信息

Prokocimer M, Modan M, Lusky A, Hershko C

出版信息

Isr J Med Sci. 1985 Jun;21(6):490-8.

PMID:4019142
Abstract

Prognostic factors in a group of 90 patients with chronic lymphocytic leukemia were studied by methods of survival analysis. The relationship between survival and a set of demographic, clinical and laboratory variables, and identification of subsets of variables that are associated with survival, was tested by multivariate analysis, which is based upon Cox proportional hazards regression models in a stepwise procedure. Six variables showed significant correlation with survival: lymph node enlargement, splenomegaly, hepatomegaly, increased percentage (greater than 80%) of lymphocytes, hyperuricemia, and anemia. Stepwise analysis showed that the number of coexistent risk factors was a better predictor of survival than any single risk marker (P less than 0.001). Median survival of patients with 0 or 1 risk marker was 120 months; with 2 or 3, 96 months; with 4, 36 months; and with 5 or 6, only 24 months. Comparison of staging by number of risk markers with staging of the same patients by the Rai system showed a significant trend of decreasing survival with increasing number of risk markers within the same Rai stage. Staging by the number of coexistent risk markers is a simple and readily available method, which may complement existing methods to provide a more accurate assessment of prognosis in patients with chronic lymphocytic leukemia.

摘要

采用生存分析方法对90例慢性淋巴细胞白血病患者的预后因素进行了研究。通过多变量分析检验了生存与一系列人口统计学、临床和实验室变量之间的关系,以及与生存相关的变量子集的识别,该多变量分析基于逐步程序中的Cox比例风险回归模型。六个变量与生存显示出显著相关性:淋巴结肿大、脾肿大、肝肿大、淋巴细胞百分比增加(大于80%)、高尿酸血症和贫血。逐步分析表明,共存风险因素的数量比任何单一风险标志物更能预测生存(P小于0.001)。有0或1个风险标志物的患者中位生存期为120个月;有2或3个风险标志物的患者为96个月;有4个风险标志物的患者为36个月;有5或6个风险标志物的患者仅为24个月。将根据风险标志物数量进行的分期与同一患者按Rai系统进行的分期相比较,发现在相同的Rai分期内,随着风险标志物数量的增加,生存呈显著下降趋势。根据共存风险标志物的数量进行分期是一种简单且易于获得的方法,它可以补充现有方法,以便更准确地评估慢性淋巴细胞白血病患者的预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验