Mididoddi Chaitanya K, Kilpatrick Robert J, Sharp Christina, Del Hougne Philipp, Horsley Simon A R, Phillips David B
Physics and Astronomy, University of Exeter, Exeter, UK.
Université de Rennes, CNRS, IETR - UMR 6164, Rennes, France.
Nat Photonics. 2025;19(4):434-440. doi: 10.1038/s41566-025-01642-z. Epub 2025 Mar 14.
The dynamic scattering of light impacts sensing and communication technologies throughout the electromagnetic spectrum. Here we introduce a new way to control the propagation of light through time-varying complex media. Our strategy is based on the observation that in many dynamic scattering systems, some parts of the medium will change configuration more slowly than others. We experimentally demonstrate a suite of new techniques to identify and guide light through the more temporally stable channels within dynamic scattering media-threading optical fields around multiple highly dynamic pockets hidden at unknown locations inside. We first show how the temporal fluctuations in scattered light can be suppressed by optimizing the wavefront of the incident field. Next, we demonstrate how to accelerate this procedure by two orders of magnitude using a physically realized form of adjoint gradient descent optimization. Finally, we show how the time-averaged transmission matrix reveals a basis of temporal fluctuation eigenchannels that can be used to increase the stability of beam shaping through time-varying complex media such as bending multimode fibres. Our work has potential future applications to a variety of technologies reliant on general wave phenomena subject to dynamic conditions, from optics to microwaves and acoustics.
光的动态散射影响着整个电磁频谱中的传感和通信技术。在此,我们介绍一种通过随时间变化的复杂介质来控制光传播的新方法。我们的策略基于这样的观察:在许多动态散射系统中,介质的某些部分配置变化比其他部分更慢。我们通过实验展示了一套新技术,用于识别并引导光穿过动态散射介质中时间上更稳定的通道——在隐藏于内部未知位置的多个高度动态区域周围引导光场。我们首先展示了如何通过优化入射场的波前来抑制散射光中的时间波动。接下来,我们演示了如何使用伴随梯度下降优化的物理实现形式将这个过程加速两个数量级。最后,我们展示了时间平均传输矩阵如何揭示时间波动本征通道的一个基,可用于通过诸如弯曲多模光纤等随时间变化的复杂介质提高光束整形的稳定性。我们的工作对未来各种依赖于受动态条件影响的一般波动现象的技术具有潜在应用,从光学到微波和声学。