Taramasco Carla, Pineiro Miguel, Ormeño-Arriagada Pablo, Robles Diego, Araya David
Facultad de Ingeniería, Universidad Andrés Bello, Vina del Mar, Valparaíso, Chile.
Millenium Núcleo of SocioMedicine (SocioMed), Universidad Mayor, Santiago, Region Metropolitana, Chile.
PeerJ. 2025 Apr 1;13:e19004. doi: 10.7717/peerj.19004. eCollection 2025.
The necessity for effective automatic fall detection mechanisms in older adults is driven by the growing demographic of elderly individuals who are at substantial health risk from falls, particularly when residing alone. Despite the existence of numerous fall detection systems (FDSs) that utilize machine learning and predictive modeling, accurately distinguishing between everyday activities and genuine falls continues to pose significant challenges, exacerbated by the varied nature of residential settings. Adaptable solutions are essential to cater to the diverse conditions under which falls occur. In this context, sensor fusion emerges as a promising solution, harnessing the unique physical properties of falls. The success of developing effective detection algorithms is dependent on the availability of comprehensive datasets that integrate data from multiple synchronized sensors. Our research introduces a novel multisensor dataset designed to support the creation and evaluation of advanced multisensor fall detection algorithms. This dataset was compiled from simulations of ten different fall types by ten participants, ensuring a wide array of scenarios. Data were collected using four types of sensors: a mobile phone equipped with a single-channel, three-dimensional accelerometer; a far infrared (FIR) thermal camera; an $8×8$ LIDAR; and a 60-64 GHz radar. These sensors were selected for their combined effectiveness in capturing detailed aspects of fall events while mitigating privacy issues linked to visual recordings. Characterization of the dataset was undertaken using two key metrics: the instantaneous norm of the signal and the temporal difference between consecutive frames. This analysis highlights the distinct variations between fall and non-fall events across different sensors and signal characteristics. Through the provision of this dataset, our objective is to facilitate the development of sensor fusion algorithms that surpass the accuracy and reliability of traditional single-sensor FDSs.
老年人对有效的自动跌倒检测机制的需求,是由老年人口不断增长所驱动的。这些老年人因跌倒面临重大健康风险,尤其是独居时。尽管存在众多利用机器学习和预测建模的跌倒检测系统(FDS),但要准确区分日常活动和真正的跌倒仍然面临重大挑战,而居住环境的多样性又加剧了这一问题。适应性解决方案对于应对跌倒发生的各种不同条件至关重要。在这种背景下,传感器融合作为一种有前景的解决方案出现了,它利用了跌倒独特的物理特性。开发有效的检测算法的成功取决于能否获得整合了来自多个同步传感器数据的综合数据集。我们的研究引入了一个新颖的多传感器数据集,旨在支持先进的多传感器跌倒检测算法的创建和评估。这个数据集是由十名参与者对十种不同跌倒类型进行模拟汇编而成,确保了广泛的场景。使用四种类型的传感器收集数据:配备单通道三维加速度计的手机;远红外(FIR)热成像摄像机;一个8×8激光雷达;以及一个60 - 64千兆赫雷达。选择这些传感器是因为它们在捕捉跌倒事件的详细方面具有综合有效性,同时减少了与视觉记录相关的隐私问题。使用两个关键指标对数据集进行了表征:信号的瞬时范数和连续帧之间的时间差。该分析突出了不同传感器和信号特征下跌倒与非跌倒事件之间的明显差异。通过提供这个数据集,我们的目标是促进传感器融合算法的开发,使其超越传统单传感器FDS的准确性和可靠性。