Sengupta Agniv, Waliser Duane E, DeFlorio Michael J, Guan Bin, Delle Monache Luca, Ralph F Martin
Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA USA.
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA.
Commun Earth Environ. 2025;6(1):256. doi: 10.1038/s43247-025-02235-y. Epub 2025 Apr 3.
The value of improving longer-lead precipitation forecasting in the water-stressed, semi-arid western United States cannot be overstated, especially considering the severity and frequency of droughts that have plagued the region for much of the 21 century. Seasonal prediction skill of current operational forecast systems, however, remain insufficient for decision-making purposes across a variety of applications. To address this capability gap, we develop a seasonal forecasting system that leverages the long-term memory of leading global and basin-scale modes of sea surface temperature variability. This approach focuses on characterizing and capitalizing on the spatiotemporal evolution of predictor modes over multiple antecedent seasons, instead of the customary use of predictive information from just the current season. Another distinctive methodological feature is the incorporation of sources of predictability spanning multiple timescales, from interannual to decadal-multidecadal. An evaluation of the forecast system's performance from cross-validation analyses demonstrates skill over core winter precipitation regions-California, Pacific Northwest, and the Upper Colorado River basin. The developed model exhibits superior skill compared to dynamical and statistical benchmarks in predicting winter precipitation. Experimental seasonal precipitation forecasts from the model have the potential to provide critical situational awareness guidance to stakeholders in the water resources, agriculture, and disaster preparedness communities.
在美国西部水资源紧张的半干旱地区,改善长期降水预报的价值再怎么强调也不为过,尤其是考虑到21世纪大部分时间里困扰该地区的干旱的严重程度和频率。然而,当前业务预报系统的季节预测技能在各种应用中仍不足以用于决策。为了弥补这一能力差距,我们开发了一种季节预测系统,该系统利用全球和流域尺度上海洋表面温度变化主要模式的长期记忆。这种方法侧重于描述和利用预测模式在多个前期季节的时空演变,而不是像通常那样仅使用当前季节的预测信息。另一个独特的方法学特征是纳入了从年际到年代际-多年代际等多个时间尺度的可预测性来源。通过交叉验证分析对预报系统性能的评估表明,该系统在核心冬季降水区域——加利福尼亚州、太平洋西北地区和科罗拉多河上游流域——具有预报技能。与动力和统计基准相比,所开发的模型在预测冬季降水方面表现出卓越的技能。该模型的实验性季节降水预报有可能为水资源、农业和灾害防范领域的利益相关者提供关键的态势感知指导。