Kailash Keshav A, Akanda Shamimur R, Davis Alexandra L, Crandall Christie L, Zaghloul Mohamed S, Setton Lori A, Halabi Carmen M, Zayed Mohamed A, Wagenseil Jessica E
Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States.
Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States.
Am J Physiol Heart Circ Physiol. 2025 May 1;328(5):H1113-H1129. doi: 10.1152/ajpheart.00886.2024. Epub 2025 Apr 7.
Thoracic aortic aneurysms (TAAs) are a dilation of the aorta that may fatally dissect or rupture. The current clinical management for TAA is continuous monitoring and surgical replacement once the aortic diameter reaches a specified size or rate of growth. Although operative intervention is often successful in preventing fatal outcomes, not all patients will reach surgical criteria before an aortic event, and the surgery carries significant risk with a potential requirement for reoperation. There is a need for patient-specific diagnostic tools and/or novel therapeutics to treat TAA. In this review, we discuss fluid and solute transport through the aortic wall (transmural aortic transport), its potential contributions to TAA progression, and possible applications for diagnosis and treatment. We first discuss the structural organization of the aortic wall with a focus on cellular and extracellular matrix (ECM) changes associated with TAA that may alter transmural transport. We then focus on aortic transmural transport processes defined with biphasic and multiphasic theory. Biphasic theory describes fluid interactions with a porous solid (i.e., the aortic wall), whereas multiphasic theory describes fluid and solute(s) interactions with a porous solid. We summarize experimental and computational methods to quantify transport through the aortic wall. Finally, we discuss how transmural transport may be used to diagnose, monitor, or treat TAA. Further understanding of transmural transport may lead to new insights into TAA pathobiology and future clinical solutions.
胸主动脉瘤(TAAs)是主动脉的一种扩张,可能会致命地夹层分离或破裂。目前TAAs的临床管理方法是持续监测,一旦主动脉直径达到特定大小或生长速率,就进行手术置换。尽管手术干预通常能成功预防致命后果,但并非所有患者在发生主动脉事件前都能达到手术标准,而且手术风险很大,可能需要再次手术。因此需要针对患者的诊断工具和/或新型治疗方法来治疗TAAs。在这篇综述中,我们讨论了液体和溶质通过主动脉壁的传输(跨壁主动脉传输),其对TAAs进展的潜在影响,以及在诊断和治疗中的可能应用。我们首先讨论主动脉壁的结构组织,重点关注与TAAs相关的细胞和细胞外基质(ECM)变化,这些变化可能会改变跨壁传输。然后我们重点关注用双相和多相理论定义的主动脉跨壁传输过程。双相理论描述了流体与多孔固体(即主动脉壁)的相互作用,而多相理论描述了流体和溶质与多孔固体的相互作用。我们总结了量化通过主动脉壁传输的实验和计算方法。最后,我们讨论了跨壁传输如何用于诊断、监测或治疗TAAs。对跨壁传输的进一步理解可能会为TAAs的病理生物学和未来临床解决方案带来新的见解。