Suppr超能文献

基于同基因人胚胎干细胞衍生的β细胞的化合物筛选揭示了一种靶向锌转运体8介导的锌转运的抑制剂,以保护胰腺β细胞免受应激诱导的细胞死亡。

A Compound Screen Based on Isogenic hESC-Derived β Cell Reveals an Inhibitor Targeting ZnT8-Mediated Zinc Transportation to Protect Pancreatic β Cell from Stress-Induced Cell Death.

作者信息

Hu Rui, Ma Qing, Kong Yunhui, Wang Zhaoyue, Xu Minglu, Chen Xiangyi, Su Yajuan, Xiao Tinghui, He Qing, Wang Xuan, Xu Wenjun, Yang Yiling, Wang Xushu, Li Xiaobo, Liu Yanfang, Chen Shuangshuang, Zhao Rui, Guo Meng, Wang Gaowei, Li Weida

机构信息

Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.

Institute of Modern Biology, Nanjing University, Nanjing, 20018, China.

出版信息

Adv Sci (Weinh). 2025 May;12(20):e2413161. doi: 10.1002/advs.202413161. Epub 2025 Apr 7.

Abstract

Pancreatic β cell loss by cellular stress contributes to diabetes pathogenesis. Nevertheless, the fundamental mechanism of cellular stress regulation remains elusive. Here, it is found that elevated zinc transportation causes excessive cellular stress in pancreatic β cells in diabetes. With gene-edited human embryonic stem cell-derived β cells (SC-β cells) and human primary islets, the results reveal that elevated zinc transportation initiates the integrated stress response (ISR), and ultimately leads to β cell death. By contrary, genetic abolishment of zinc transportation shields β cells from exacerbated endoplasmic reticulum stress (ER stress) and concurrent ISR. To target excessive zinc transportation with a chemical inhibitor, an isogenic SC-β cells based drug-screening platform is established. Surprisingly, independent of its traditional role as protein synthesis inhibitor at a high-dose (10 µm), low-dose (25 nm) anisomycin significantly inhibits zinc transportation and effectively prevents β cell loss. Remarkably, in vivo administration of anisomycin in mice demonstrates protective effects on β cells and prevents type 2 diabetes induced by high-fat diet. Overall, elevated zinc transportation is identified as a crucial driver of β cell loss and low-dose anisomycin as a potential therapeutic molecule for diabetes.

摘要

细胞应激导致的胰腺β细胞丢失是糖尿病发病机制的一个因素。然而,细胞应激调节的基本机制仍不清楚。在此研究中,发现锌转运增加会在糖尿病患者的胰腺β细胞中引起过度的细胞应激。利用基因编辑的人胚胎干细胞衍生的β细胞(SC-β细胞)和人原代胰岛,结果显示锌转运增加会引发综合应激反应(ISR),最终导致β细胞死亡。相反,锌转运的基因敲除可使β细胞免受内质网应激(ER应激)加剧和同时发生的ISR的影响。为了用化学抑制剂靶向过度的锌转运,建立了一个基于同基因SC-β细胞的药物筛选平台。令人惊讶的是,低剂量(25 nM)茴香霉素在高剂量(10 μM)时作为蛋白质合成抑制剂的传统作用之外,还能显著抑制锌转运,并有效防止β细胞丢失。值得注意的是,在小鼠体内给予茴香霉素对β细胞具有保护作用,并可预防高脂饮食诱导的2型糖尿病。总体而言,锌转运增加被确定为β细胞丢失的关键驱动因素,低剂量茴香霉素被确定为糖尿病的潜在治疗分子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6704/12120731/c71fcac1f6d9/ADVS-12-2413161-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验