Laudo Joel, Han Tianhong, Ledwon Joanna, Figueroa Ariel E, Gosain Arun K, Lee Taeksang, Tepole Adrian Buganza
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906.
Purdue University West Lafayette.
J Biomech Eng. 2025 Jul 1;147(7). doi: 10.1115/1.4068370.
Breast reconstruction using tissue expanders is the primary treatment option following mastectomy. Although skin growth in response to chronic supra-physiological stretch is well-established, individual patient factors such as breast shape, volume, skin prestrain, and mechanical properties, create unique deformation and growth patterns. The inability to predict skin growth and deformation prior to treatment often leads to complications and suboptimal esthetic outcomes. Personalized predictive simulations offer a promising solution to these challenges. We present a pipeline for predictive computational models of skin growth in tissue expansion. At the start of treatment, we collect three-dimensional (3D) photos and create an initial finite element model. Our framework accounts for uncertainties in treatment protocols, mechanical properties, and biological parameters. These uncertainties are informed by surgeon input, existing literature on mechanical properties, and prior research on porcine models for biological parameters. By collecting 3D photos longitudinally during treatment, and integrating the data through a Bayesian framework, we can systematically reduce uncertainty in the predictions. Calibrated personalized models are sampled using Monte Carlo methods, which require thousands of model evaluations. To overcome the computational limitations of directly evaluating the finite element model, we use Gaussian process surrogate models. We anticipate that this pipeline can be used to guide patient treatment in the near future.
使用组织扩张器进行乳房重建是乳房切除术后的主要治疗选择。尽管皮肤对慢性超生理拉伸的生长反应已得到充分证实,但个体患者因素,如乳房形状、体积、皮肤预应变和力学性能,会产生独特的变形和生长模式。在治疗前无法预测皮肤的生长和变形往往会导致并发症和美学效果不佳。个性化预测模拟为这些挑战提供了一个有前景的解决方案。我们提出了一个用于组织扩张中皮肤生长预测计算模型的流程。在治疗开始时,我们收集三维(3D)照片并创建初始有限元模型。我们的框架考虑了治疗方案、力学性能和生物学参数中的不确定性。这些不确定性通过外科医生的输入、关于力学性能的现有文献以及关于生物学参数的猪模型的先前研究来确定。通过在治疗期间纵向收集3D照片,并通过贝叶斯框架整合数据,我们可以系统地减少预测中的不确定性。使用蒙特卡罗方法对校准后的个性化模型进行采样,这需要数千次模型评估。为了克服直接评估有限元模型的计算限制,我们使用高斯过程代理模型。我们预计该流程在不久的将来可用于指导患者治疗。