文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Safety and preliminary efficacy of an electrically stimulated implant for mandibular bone regeneration: a pilot study in a large animal model.

作者信息

Kämmerer Peer W, Engel Nadja, Bader Rainer, Engel Vivien, Frerich Bernhard, Heimes Diana, Kröger Justin, Lembcke Laura, Plocksties Franz, Raben Hendrikje, van Rienen Ursula, Springer Armin, Timmermann Dirk, Zimmermann Julius, Dau Michael

机构信息

Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Center, Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany.

Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee 35, 18057, Rostock, Germany.

出版信息

Clin Oral Investig. 2025 Apr 7;29(5):226. doi: 10.1007/s00784-025-06303-7.


DOI:10.1007/s00784-025-06303-7
PMID:40192829
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11976354/
Abstract

OBJECTIVES: Large mandibular defects present challenges for bone regeneration. This pilot study evaluates the safety and preliminary efficacy of direct electrical stimulation (ES) on tissue healing in a preclinical model, testing whether ES can enhance bone formation in critical-size mandibular defects. MATERIALS AND METHODS: Six adult mini pigs with critical-size mandibular defects were used in a split-mouth design. The test group (n = 6) received 0.5 V AC/20 Hz ES for 3 × 45 min daily over three weeks, while the control group (n = 6) had no stimulation. Safety, early bone growth, and soft tissue effects were assessed at three locations: S1 (cancellous bone interface), S2 (middle of the defect), and S3 (pristine dense bone). RESULTS: The ES group showed no adverse effects, confirming implant safety. The ES group exhibited significantly higher bone formation, particularly in S2 and S3. Enhanced vascularization and immune response, in terms of increased mast cells, were also observed in S2. CONCLUSIONS: The implant device with ES is safe and promotes bone formation and vascularization in select sub-regions (S2 and S3). However, ES alone may not suffice for complete bone regeneration in critical-sized defects, and further optimization is needed. CLINICAL RELEVANCE: This study demonstrates the potential of ES to improve bone healing in large mandibular defects, offering insights for clinical use in maxillofacial reconstruction.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/66261c245c95/784_2025_6303_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/614f23ca38cb/784_2025_6303_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/08c02ae80ae3/784_2025_6303_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/e4bff96b6397/784_2025_6303_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/39073a77d0a8/784_2025_6303_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/d25e91d82a93/784_2025_6303_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/4c7c7a589667/784_2025_6303_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/63b8c5e3f8df/784_2025_6303_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/d44ca8fc3f6e/784_2025_6303_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/9a9a1e83ecf9/784_2025_6303_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/66261c245c95/784_2025_6303_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/614f23ca38cb/784_2025_6303_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/08c02ae80ae3/784_2025_6303_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/e4bff96b6397/784_2025_6303_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/39073a77d0a8/784_2025_6303_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/d25e91d82a93/784_2025_6303_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/4c7c7a589667/784_2025_6303_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/63b8c5e3f8df/784_2025_6303_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/d44ca8fc3f6e/784_2025_6303_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/9a9a1e83ecf9/784_2025_6303_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c66/11976354/66261c245c95/784_2025_6303_Fig10_HTML.jpg

相似文献

[1]
Safety and preliminary efficacy of an electrically stimulated implant for mandibular bone regeneration: a pilot study in a large animal model.

Clin Oral Investig. 2025-4-7

[2]
Miniature pigs as an animal model for implant research: bone regeneration in critical-size defects.

Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009-11

[3]
Implantable electrical stimulation bioreactor with liquid crystal polymer-based electrodes for enhanced bone regeneration at mandibular large defects in rabbit.

Med Biol Eng Comput. 2019-12-18

[4]
Role of periosteum during healing of alveolar critical size bone defects in the mandible: a pilot study.

Clin Oral Investig. 2023-8

[5]
Bony healing of large cranial and mandibular defects protected from soft-tissue interposition: A comparative study of spontaneous bone regeneration, osteoconduction, and cancellous autografting in dogs.

Plast Reconstr Surg. 1998-3

[6]
Osseointegration of Anodized vs. Sandblasted Implant Surfaces in a Guided Bone Regeneration Acute Dehiscence-Type Defect: An In Vivo Experimental Mandibular Minipig Model.

Clin Oral Implants Res. 2025-1

[7]
A Mini-Pig Mandibular Defect Model for Evaluation of Craniomaxillofacial Bone Regeneration.

Tissue Eng Part C Methods. 2022-5

[8]
Application of bone morphogenetic proteins in the treatment of clinical oral and maxillofacial osseous defects.

J Bone Joint Surg Am. 2001

[9]
Establishing a critical-size mandibular defect model in growing pigs: characterization of spontaneous healing.

J Oral Maxillofac Surg. 2014-9

[10]
TiO scaffolds in peri-implant dehiscence defects: an experimental pilot study.

Clin Oral Implants Res. 2016-10

本文引用的文献

[1]
Addressing Model Uncertainties in Finite Element Simulation of Electrically Stimulated Implants for Critical-Size Mandibular Defects.

IEEE Trans Biomed Eng. 2024-10

[2]
MORPHOLOGICAL CHARACTERISTICS OF REPARATIVE OSTEOGENESIS IN THE RATS LOWER JAW UNDER THE CONDITIONS OF USING ELECTRICAL STIMULATION.

Pol Merkur Lekarski. 2023

[3]
Invasive electrical stimulation in the treatment of avascular osteonecrosis of the femoral head - mid-term results.

Acta Orthop Belg. 2023-12

[4]
Rehabilitation exercise-driven symbiotic electrical stimulation system accelerating bone regeneration.

Sci Adv. 2024-1-5

[5]
Nonvascularized bone grafts: how successful are they in reconstruction of segmental mandibular defects?

Oral Surg Oral Med Oral Pathol Oral Radiol. 2024-5

[6]
EXPERIMENTAL AND MORPHOLOGICAL ASSESSMENT OF THE INFLUENCE OF HYDROXYAPATITE-CONTAINING OSTEOTROPIC MATERIAL AND ELECTRICAL STIMULATION ON REPARATIVE OSTEOGENESIS OF THE LOWER JAW.

Pol Merkur Lekarski. 2023

[7]
Bone reconstruction of extensive maxillomandibular defects in adults.

Periodontol 2000. 2023-10

[8]
Combining Electrostimulation with Impedance Sensing to Promote and Track Osteogenesis within a Titanium Implant.

Biomedicines. 2023-2-24

[9]
Experimental and numerical methods to ensure comprehensible and replicable alternating current electrical stimulation experiments.

Bioelectrochemistry. 2023-6

[10]
Long-term stimulation with alternating electric fields modulates the differentiation and mineralization of human pre-osteoblasts.

Front Physiol. 2022-9-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索