Suppr超能文献

NA_mCNN:通过整合多窗口深度学习和ProtTrans对膜蛋白中的钠转运体进行分类以挖掘其治疗潜力

NA_mCNN: Classification of Sodium Transporters in Membrane Proteins by Integrating Multi-Window Deep Learning and ProtTrans for Their Therapeutic Potential.

作者信息

Malik Muhammad Shahid, Le Van The, Ou Yu-Yen

机构信息

Department of Computer Science and Engineering, Yuan Ze University, Chung-Li 32003, Taiwan.

Department of Computer Sciences, Karakoram International University, Gilgit-Baltistan 15100, Pakistan.

出版信息

J Proteome Res. 2025 May 2;24(5):2324-2335. doi: 10.1021/acs.jproteome.4c00884. Epub 2025 Apr 7.

Abstract

Sodium transporters maintain cellular homeostasis by transporting ions, minerals, and nutrients across the membrane, and Na+/K+ ATPases facilitate the cotransport of solutes in neurons, muscle cells, and epithelial cells. Sodium transporters are important for many physiological processes, and their dysfunction leads to diseases such as hypertension, diabetes, neurological disorders, and cancer. The NA_mCNN computational method highlights the functional diversity and significance of sodium transporters in membrane proteins using protein language model embeddings (PLMs) and multiple-window scanning deep learning models. This work investigates PLMs that include Tape, ProtTrans, ESM-1b-1280, and ESM-2-128 to achieve more accuracy in sodium transporter classification. Five-fold cross-validation and independent testing demonstrate ProtTrans embedding robustness. In cross-validation, ProtTrans achieved an AUC of 0.9939, a sensitivity of 0.9829, and a specificity of 0.9889, demonstrating its ability to distinguish positive and negative samples. In independent testing, ProtTrans maintained a sensitivity of 0.9765, a specificity of 0.9991, and an AUC of 0.9975, which indicates its high level of discrimination. This study advances the understanding of sodium transporter diversity and function, as well as their role in human pathophysiology. Our goal is to use deep learning techniques and protein language models for identifying sodium transporters to accelerate identification and develop new therapeutic interventions.

摘要

钠转运蛋白通过跨膜运输离子、矿物质和营养物质来维持细胞内稳态,而钠钾ATP酶则促进神经元、肌肉细胞和上皮细胞中溶质的协同运输。钠转运蛋白对许多生理过程都很重要,其功能障碍会导致高血压、糖尿病、神经紊乱和癌症等疾病。NA_mCNN计算方法利用蛋白质语言模型嵌入(PLM)和多窗口扫描深度学习模型,突出了钠转运蛋白在膜蛋白中的功能多样性和重要性。这项工作研究了包括Tape、ProtTrans、ESM-1b-1280和ESM-2-128在内的PLM,以在钠转运蛋白分类中实现更高的准确性。五折交叉验证和独立测试证明了ProtTrans嵌入的稳健性。在交叉验证中,ProtTrans的曲线下面积(AUC)为0.9939,灵敏度为0.9829,特异性为0.9889,表明其能够区分阳性和阴性样本。在独立测试中,ProtTrans的灵敏度为0.9765,特异性为0.9991,AUC为0.9975,这表明其具有很高的辨别力。这项研究增进了我们对钠转运蛋白多样性和功能及其在人类病理生理学中作用的理解。我们的目标是利用深度学习技术和蛋白质语言模型来识别钠转运蛋白,以加速识别并开发新的治疗干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0d4/12053934/c68fdd7b3f72/pr4c00884_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验