Suppr超能文献

MCNN_MC:利用蛋白质语言模型和卷积神经网络对线粒体载体进行计算预测并研究米酵菌酸毒性

MCNN_MC: Computational Prediction of Mitochondrial Carriers and Investigation of Bongkrekic Acid Toxicity Using Protein Language Models and Convolutional Neural Networks.

作者信息

Malik Muhammad Shahid, Chang Yan-Yun, Liu Yu-Chen, Le Van The, Ou Yu-Yen

机构信息

Department of Computer Science and Engineering, Yuan Ze University, Chung-Li 32003, Taiwan.

Department of Computer Sciences, Karakoram International University, Gilgit-Baltistan 15100, Pakistan.

出版信息

J Chem Inf Model. 2024 Dec 23;64(24):9125-9134. doi: 10.1021/acs.jcim.4c00961. Epub 2024 Aug 12.

Abstract

Mitochondrial carriers (MCs) are essential proteins that transport metabolites across mitochondrial membranes and play a critical role in cellular metabolism. ADP/ATP (adenosine diphosphate/adenosine triphosphate) is one of the most important carriers as it contributes to cellular energy production and is susceptible to the powerful toxin bongkrekic acid. This toxin has claimed several lives; for example, a recent foodborne outbreak in Taipei, Taiwan, has caused four deaths and sickened 30 people. The issue of bongkrekic acid poisoning has been a long-standing problem in Indonesia, with reports as early as 1895 detailing numerous deaths from contaminated coconut fermented cakes. In bioinformatics, significant advances have been made in understanding biological processes through computational methods; however, no established computational method has been developed for identifying mitochondrial carriers. We propose a computational bioinformatics approach for predicting MCs from a broader class of secondary active transporters with a focus on the ADP/ATP carrier and its interaction with bongkrekic acid. The proposed model combines protein language models (PLMs) with multiwindow scanning convolutional neural networks (mCNNs). While PLM embeddings capture contextual information within proteins, mCNN scans multiple windows to identify potential binding sites and extract local features. Our results show 96.66% sensitivity, 95.76% specificity, 96.12% accuracy, 91.83% Matthews correlation coefficient (MCC), 94.63% F1-Score, and 98.55% area under the curve (AUC). The results demonstrate the effectiveness of the proposed approach in predicting MCs and elucidating their functions, particularly in the context of bongkrekic acid toxicity. This study presents a valuable approach for identifying novel mitochondrial complexes, characterizing their functional roles, and understanding mitochondrial toxicology mechanisms. Our findings, that utilize computational methods to improve our understanding of cellular processes and drug-target interactions, contribute to the development of therapeutic strategies for mitochondrial disorders, reducing the devastating effects of bongkrekic acid poisoning.

摘要

线粒体载体(MCs)是一类重要的蛋白质,它们负责将代谢物转运穿过线粒体膜,在细胞代谢中发挥关键作用。ADP/ATP(二磷酸腺苷/三磷酸腺苷)是最重要的载体之一,因为它对细胞能量产生有重要作用,且易受强效毒素邦克酸的影响。这种毒素已导致数人死亡;例如,台湾台北最近发生的一次食源性疾病暴发造成4人死亡,30人患病。邦克酸中毒问题在印度尼西亚一直是个长期存在的问题,早在1895年就有报告详细描述了因食用受污染的椰子发酵饼而导致的众多死亡事件。在生物信息学领域,通过计算方法在理解生物过程方面取得了重大进展;然而,尚未开发出用于识别线粒体载体的既定计算方法。我们提出一种计算生物信息学方法,用于从更广泛的一类次级主动转运蛋白中预测MCs,重点关注ADP/ATP载体及其与邦克酸的相互作用。所提出的模型将蛋白质语言模型(PLMs)与多窗口扫描卷积神经网络(mCNNs)相结合。虽然PLM嵌入捕获蛋白质内的上下文信息,但mCNN扫描多个窗口以识别潜在的结合位点并提取局部特征。我们的结果显示灵敏度为96.66%,特异性为95.76%,准确率为96.12%,马修斯相关系数(MCC)为91.83%,F1分数为94.63%,曲线下面积(AUC)为98.55%。结果证明了所提出方法在预测MCs和阐明其功能方面的有效性,特别是在邦克酸毒性的背景下。这项研究为识别新型线粒体复合物、表征其功能作用以及理解线粒体毒理学机制提供了一种有价值方法。我们利用计算方法增进对细胞过程和药物 - 靶点相互作用理解的研究结果,有助于线粒体疾病治疗策略的开发,减少邦克酸中毒的毁灭性影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aba/11683872/e0675cfa0cf6/ci4c00961_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验