Rohilla Pankaj, O'Neil Johnathan N, Singh Paras, Ortega-Jimenez Victor M, Choi Daehyun, Bose Chandan, Bhamla Saad
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
bioRxiv. 2025 Mar 25:2024.06.17.599397. doi: 10.1101/2024.06.17.599397.
Vortex recapture underpins the exceptional mobility of nature's finest fliers and swimmers. Utilized by agile fruit flies and efficient jellyfish, this phenomenon is well-documented in bulk fluids. Despite extensive studies on organismal locomotion at the water's surface, a vital fluidic interface where diverse life forms interact, hydrodynamics of interfacial vortex recapture remains unexplored. We investigate interfacial (on water) vortical hydrodynamics in , one of the smallest and fastest water striders, skating at 50 body lengths per second (BL/s) or 15 cm/s. Their middle legs shed counter-rotating vortices, re-energized by their hind legs, demonstrating interfacial vortex recapture. High-speed imaging, particle imaging velocimetry, physical models, and CFD simulations show re-energization increases thrust by creating positive pressure at the hind tarsi, acting as a virtual wall. This vortex capture is facilitated by the tripod gait, leg morphology, and precise spatio-temporal placement of the hind tarsi during the power stroke. Our study extends vortex recapture principles from bulk fluids to the interface, offering insights into efficient interfacial locomotion, where surface tension and capillary waves challenge movement. Understanding interfacial vortex hydrodynamics can guide the development of energy-efficient microrobots to explore the planet's water surface niches, critical frontlines of climate change and pollution.
涡旋再捕获是自然界中最出色的飞行者和游泳者卓越机动性的基础。敏捷的果蝇和高效的水母都利用了这一现象,在大量流体中这一现象已有充分记录。尽管对水表面这一多样生命形式相互作用的重要流体界面上的生物运动进行了广泛研究,但界面涡旋再捕获的流体动力学仍未被探索。我们研究了一种最小且速度最快的水黾在水面上的界面(水上)涡旋流体动力学,它以每秒50个身体长度(BL/s)或15厘米/秒的速度滑行。它们的中腿会产生反向旋转的涡旋,而后腿会对这些涡旋进行再 energized(此处原文有误,可能是“re - energize”,译为“再激发”),展示了界面涡旋再捕获。高速成像、粒子成像测速、物理模型和计算流体力学模拟表明,再激发通过在后跗节处产生正压来增加推力,后跗节起到了虚拟壁的作用。这种涡旋捕获得益于三脚架步态、腿部形态以及后跗节在动力冲程期间精确的时空位置。我们的研究将涡旋再捕获原理从大量流体扩展到了界面,为高效的界面运动提供了见解,在这种运动中,表面张力和毛细波对运动构成挑战。理解界面涡旋流体动力学可以指导节能微型机器人的开发,以探索地球水面生态位,这些生态位是气候变化和污染的关键前沿领域。