Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, INRAE USC 1370 École Normale Supérieure de Lyon, Université Claude Bernard Lyon1, Lyon 69364, France
Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, INRAE USC 1370 École Normale Supérieure de Lyon, Université Claude Bernard Lyon1, Lyon 69364, France.
Proc Natl Acad Sci U S A. 2022 Mar 1;119(9). doi: 10.1073/pnas.2119210119.
Access to hitherto unexploited ecological opportunities is associated with phenotypic evolution and often results in significant lineage diversification. Yet our understanding of the mechanisms underlying such adaptive traits remains limited. Water striders have been able to exploit the water-air interface, primarily facilitated by changes in the density of hydrophobic bristles and a significant increase in leg length. These two traits are functionally correlated and are both necessary for generating efficient locomotion on the water surface. Whether bristle density and leg length have any cellular or developmental genetic mechanisms in common is unknown. Here, we combine comparative genomics and transcriptomics with functional RNA interference assays to examine the developmental genetic and cellular mechanisms underlying the patterning of the bristles and the legs in and , two species of water striders. We found that two duplication events in the genes and led to a functional expansion of the paralogs, which affected bristle density and leg length. We also identified genes for which no function in bristle development has been previously described in other insects. Interestingly, most of these genes play a dual role in regulating bristle development and leg length. In addition, these genes play a role in regulating cell division. This result suggests that cell division may be a common mechanism through which these genes can simultaneously regulate leg length and bristle density. We propose that pleiotropy, through which gene function affects the development of multiple traits, may play a prominent role in facilitating access to unexploited ecological opportunities and species diversification.
对迄今尚未开发的生态机会的获取与表型进化有关,并且通常导致谱系的显著多样化。然而,我们对这种适应性特征背后的机制的理解仍然有限。水黾已经能够利用水-气界面,这主要得益于疏水性刚毛密度的变化和腿部长度的显著增加。这两个特征在功能上是相关的,对于在水面上产生有效的运动都是必要的。刚毛密度和腿部长度是否具有任何细胞或发育遗传机制尚不清楚。在这里,我们将比较基因组学和转录组学与功能 RNA 干扰测定相结合,以研究 和 两种水黾的刚毛和腿部模式形成的发育遗传和细胞机制。我们发现,基因 和 中的两个重复事件导致了功能扩展,这影响了刚毛密度和腿部长度。我们还鉴定了在其他昆虫中以前没有描述过在刚毛发育中起作用的基因。有趣的是,这些基因中的大多数在调节刚毛发育和腿部长度方面发挥双重作用。此外,这些基因在调节细胞分裂中起作用。这一结果表明,细胞分裂可能是这些基因同时调节腿部长度和刚毛密度的共同机制。我们提出,多效性,即基因功能影响多个特征的发育,可能在促进对未开发的生态机会的获取和物种多样化方面发挥突出作用。