Suppr超能文献

增强型甲状腺结节检测与诊断:一种针对临床部署的移动优化DeepLabV3+方法。

Enhanced thyroid nodule detection and diagnosis: a mobile-optimized DeepLabV3+ approach for clinical deployments.

作者信息

Yang Changan, Ashraf Muhammad Awais, Riaz Mudassar, Umwanzavugaye Pascal, Chipusu Kavimbi, Huang Hongyuan, Xu Yueqin

机构信息

Department of Thyroid and Breast Surgery, Jinjiang Municipal Hospital (Shanghai Sixth People's Hospital Fujian), Quanzhou, Fujian, China.

Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada.

出版信息

Front Physiol. 2025 Mar 24;16:1457197. doi: 10.3389/fphys.2025.1457197. eCollection 2025.

Abstract

OBJECTIVE

This study aims to enhance the efficiency and accuracy of thyroid nodule segmentation in ultrasound images, ultimately improving nodule detection and diagnosis. For clinical deployment on mobile and embedded devices, DeepLabV3+ strives to achieve a balance between a lightweight architecture and high segmentation accuracy.

METHODOLOGY

A comprehensive dataset of ultrasound images was meticulously curated using a high-resolution ultrasound imaging device. Data acquisition adhered to standardized protocols to ensure high-quality imaging. Preprocessing steps, including noise reduction and contrast optimization, were applied to enhance image clarity. Expert radiologists provided ground truth labels through meticulous annotation. To improve segmentation performance, we integrated MobileNetV2 and Depthwise Separable Dilated Convolution into the Atrous Spatial Pyramid Pooling (ASPP) module, incorporating the Pyramid Pooling Module (PPM) and attention mechanisms. To mitigate classification imbalances, we employed Tversky loss functions in the ultrasound image classification process.

RESULTS

In semantic image segmentation, DeepLabV3+ achieved an impressive Intersection over Union (IoU) of 94.37%, while utilizing only 12.4 MB of parameters, including weights and biases. This remarkable accuracy demonstrates the effectiveness of our approach. A high IoU value in medical imaging analysis reflects the model's ability to accurately delineate object boundaries.

CONCLUSION

DeepLabV3+ represents a significant advancement in thyroid nodule segmentation, particularly for thyroid cancer screening and diagnosis. The obtained segmentation results suggest promising directions for future research, especially in the early detection of thyroid nodules. Deploying this algorithm on mobile devices offers a practical solution for early diagnosis and is likely to improve patient outcomes.

摘要

目的

本研究旨在提高超声图像中甲状腺结节分割的效率和准确性,最终改善结节的检测和诊断。为了在移动和嵌入式设备上进行临床部署,深度卷积神经网络语义分割模型(DeepLabV3+)努力在轻量级架构和高分割精度之间取得平衡。

方法

使用高分辨率超声成像设备精心策划了一个全面的超声图像数据集。数据采集遵循标准化协议以确保高质量成像。应用了包括降噪和对比度优化在内的预处理步骤来提高图像清晰度。专家放射科医生通过细致标注提供了真实标签。为了提高分割性能,我们将MobileNetV2和深度可分离扩张卷积集成到空洞空间金字塔池化(ASPP)模块中,并入了金字塔池化模块(PPM)和注意力机制。为了缓解分类不平衡问题,我们在超声图像分类过程中采用了Tversky损失函数。

结果

在语义图像分割中,深度卷积神经网络语义分割模型(DeepLabV3+)实现了令人印象深刻的94.37%的交并比(IoU),同时仅使用了12.4MB的参数,包括权重和偏差。这一显著的准确性证明了我们方法的有效性。医学成像分析中的高IoU值反映了模型准确描绘物体边界的能力。

结论

深度卷积神经网络语义分割模型(DeepLabV3+)代表了甲状腺结节分割方面的重大进展,特别是在甲状腺癌筛查和诊断方面。获得的分割结果为未来研究提供了有前景的方向,尤其是在甲状腺结节的早期检测方面。在移动设备上部署该算法为早期诊断提供了切实可行的解决方案,并可能改善患者的治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验