Suppr超能文献

一种用于在存在重影伪影的磁共振图像中分割心腔的新型U-Net方法。

A novel U-Net approach to segment the cardiac chamber in magnetic resonance images with ghost artifacts.

作者信息

Zhao Ming, Wei Yang, Lu Yu, Wong Kelvin K L

机构信息

School of Computer Science and Engineering, Central South University, Changsha, China.

School of Computer Science and Engineering, Central South University, Changsha, China.

出版信息

Comput Methods Programs Biomed. 2020 Nov;196:105623. doi: 10.1016/j.cmpb.2020.105623. Epub 2020 Jun 24.

Abstract

OBJECTIVE

We propose a robust technique for segmenting magnetic resonance images of post-atrial septal occlusion intervention in the cardiac chamber.

METHODS

A variant of the U-Net architecture is used to perform atrial segmentation via a deep convolutional neural network, and we compare performance with the Kass snake model. It can be used to determine the surgical success of atrial septal occlusion (ASO) pre- and post- the implantation of the septal occluder, which is based on the volume restoration of the right atria (RA) and left atria (LA).

RESULTS

The method was evaluated on a test dataset containing 550 two-dimensional image slices, outperforming conventional active contouring regarding the Dice similarity coefficient, Jaccard index, and Hausdorff distance, and achieving segmentation in the presence of ghost artifacts that occlude the atrium outline. This problem has been unsolvable using traditional machine learning algorithm pertaining to active contouring via the Kass snake algorithm. Moreover, the proposed technique is closer to manual segmentation than the snakes active contour model in mean of atrial area (M-AA), mean of atrial maximum diameter (M-AMXD), mean atrial minimum diameter (M-AMID), and mean angle of the atrial long axis (M-AALA).

CONCLUSION

After segmentation, we compute the volume ratio of right to left atria, obtaining a smaller ratio that indicates better restoration. Hence, the proposed technique allows to evaluate the surgical success of atrial septal occlusion and may support diagnosis regarding the accurate evaluation of atrial septal defects before and after occlusion procedures.

摘要

目的

我们提出一种稳健的技术,用于分割心腔内房间隔封堵干预后的磁共振图像。

方法

使用U-Net架构的一个变体,通过深度卷积神经网络进行心房分割,并将其性能与Kass蛇模型进行比较。它可用于根据右心房(RA)和左心房(LA)的容积恢复情况,确定房间隔封堵器植入前后房间隔封堵(ASO)的手术成功率。

结果

该方法在包含550个二维图像切片的测试数据集上进行了评估,在骰子相似系数、杰卡德指数和豪斯多夫距离方面优于传统的主动轮廓法,并且在存在遮挡心房轮廓的重影伪影的情况下也能实现分割。使用通过Kass蛇算法进行主动轮廓的传统机器学习算法,这个问题一直无法解决。此外,在心房面积均值(M-AA)、心房最大直径均值(M-AMXD)、心房最小直径均值(M-AMID)和心房长轴平均角度(M-AALA)方面,所提出的技术比蛇形主动轮廓模型更接近手动分割。

结论

分割后,我们计算右心房与左心房的容积比,较小的比值表明恢复效果更好。因此,所提出的技术能够评估房间隔封堵的手术成功率,并可能支持在封堵手术前后对房间隔缺损进行准确评估的诊断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验