Lamouadene Hajar, El Kassaoui Majid, El Yadari Mourad, El Kenz Abdallah, Benyoussef Abdelilah, El Moutaouakil Amine, Mounkachi Omar
Laboratory of Condensed Matter and Interdisciplinary Sciences, Physics Department, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
Laboratory of Condensed Matter and Interdisciplinary Sciences, Physics Department, Faculty of Sciences, Mohammed V University in Rabat, Morocco; College of computing, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid Ben Guerir, 43150, Morocco.
Comput Biol Med. 2025 Jun;191:110131. doi: 10.1016/j.compbiomed.2025.110131. Epub 2025 Apr 7.
The COVID-19 pandemic has significantly strained healthcare systems, highlighting the need for early diagnosis to isolate positive cases and prevent the spread. This study combines machine learning, deep learning, and transfer learning techniques to automatically diagnose COVID-19 and other pulmonary conditions from radiographic images. First, we used Convolutional Neural Networks (CNNs) and a Support Vector Machine (SVM) classifier on a dataset of 21,165 chest X-ray images. Our model achieved an accuracy of 86.18 %. This approach aids medical experts in rapidly and accurateky detecting lung diseases. Next, we applied transfer learning using ResNet18 combined with SVM on a dataset comprising normal, COVID-19, lung opacity, and viral pneumonia images. This model outperformed traditional methods, with classification rates of 98 % with Stochastic Gradient Descent (SGD), 97 % with Adam, 96 % with RMSProp, and 94 % with Adagrad optimizers. Additionally, we incorporated two additional transfer learning models, EfficientNet-CNN and Xception-CNN, which achieved classification accuracies of 99.20 % and 98.80 %, respectively. However, we observed limitations in dataset diversity and representativeness, which may affect model generalization. Future work will focus on implementing advanced data augmentation techniques and collaborations with medical experts to enhance model performance.This research demonstrates the potential of cutting-edge deep learning techniques to improve diagnostic accuracy and efficiency in medical imaging applications.
新冠疫情给医疗系统带来了巨大压力,凸显了早期诊断以隔离阳性病例并防止传播的必要性。本研究结合机器学习、深度学习和迁移学习技术,从X光图像中自动诊断新冠及其他肺部疾病。首先,我们在一个包含21165张胸部X光图像的数据集上使用了卷积神经网络(CNN)和支持向量机(SVM)分类器。我们的模型准确率达到了86.18%。这种方法有助于医学专家快速、准确地检测肺部疾病。接下来,我们在一个包含正常、新冠、肺部模糊和病毒性肺炎图像的数据集上,应用了结合SVM的ResNet18进行迁移学习。该模型优于传统方法,使用随机梯度下降(SGD)优化器时分类率为98%,使用Adam优化器时为97%,使用RMSProp优化器时为96%,使用Adagrad优化器时为94%。此外,我们还纳入了另外两个迁移学习模型,即EfficientNet-CNN和Xception-CNN,它们的分类准确率分别达到了99.20%和98.80%。然而,我们发现数据集的多样性和代表性存在局限性,这可能会影响模型的泛化能力。未来的工作将集中在实施先进的数据增强技术以及与医学专家合作以提高模型性能。这项研究展示了前沿深度学习技术在提高医学成像应用中诊断准确性和效率方面的潜力。