An Junpu, Liu Hongchen, Yang Fan, Wei Kexin, Yu Chunhui, Sun Siyuan, Sun Yang, Guo Qing, Wang Jianfeng, Wang Chenlin, Liu Jiahui, Wang Kuobo, Li Yongfeng
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, China.
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, China.
J Colloid Interface Sci. 2025 Aug 15;692:137510. doi: 10.1016/j.jcis.2025.137510. Epub 2025 Apr 3.
Nickel-based catalysts show great potential as promising candidates for the electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF). However, the limited adsorption capacity of nickel-based catalysts for OH and HMF limits their further development. In this study, amorphous Fe/NiOOH-SO was generated from nanosheets (Fe/NiOOH-NiS), which was pre-fabricated on nickel foam via pre-reconstruction and anionic regulation strategy. The optimized catalyst Fe/NiOOH-NiS demonstrated exceptional activity in the HMF oxidation reaction (HMFOR) with a current density of 10 mA cm at 1.32 V vs RHE, accompanying with the 98.9 % HMF conversion, 97.8 % 2,5-Furandicarboxylic acid (FDCA) selectivity, 96.8 % Faraday efficiency, and stability for ten cycles. The incorporating amorphous FeOOH reduces the electron density around Ni, promoting the formation of high-valent Ni spices. Meanwhile, the SO combined with amorphous hydroxy nickel oxide provides unsaturated sites, which enhances the adsorption capacity of HMF. Density functional theory (DFT) computations reveal that the designed amorphous Fe/NiOOH and surface-adsorbed SO collectively modulate the electronic structure of the catalyst, causing an upwards shift of the NiOOH d-band center and enhancing adsorption capacities for both HMF and OH. This study proposes the adsorption enhancement mechanism of regulating electronic structure and offers a rational strategy for HMFOR electrocatalysts.
镍基催化剂作为5-羟甲基糠醛(HMF)电催化氧化的有前景候选者显示出巨大潜力。然而,镍基催化剂对OH和HMF的吸附容量有限,限制了它们的进一步发展。在本研究中,通过预重构和阴离子调控策略在泡沫镍上预制的纳米片(Fe/NiOOH-NiS)生成了非晶态Fe/NiOOH-SO。优化后的催化剂Fe/NiOOH-NiS在HMF氧化反应(HMFOR)中表现出优异的活性,在相对于可逆氢电极(RHE)为1.32 V时电流密度为10 mA cm,同时HMF转化率为98.9%,2,5-呋喃二甲酸(FDCA)选择性为97.8%,法拉第效率为96.8%,并且具有十次循环的稳定性。掺入的非晶态FeOOH降低了Ni周围的电子密度,促进了高价Ni物种的形成。同时,SO与非晶态羟基氧化镍结合提供了不饱和位点,增强了HMF的吸附能力。密度泛函理论(DFT)计算表明,设计的非晶态Fe/NiOOH和表面吸附的SO共同调节了催化剂的电子结构,导致NiOOH d带中心向上移动,增强了对HMF和OH的吸附能力。本研究提出了调节电子结构的吸附增强机制,并为HMFOR电催化剂提供了合理策略。